动能均分这个概念最早是在1843年,或更准确地说应是1845年,由约翰·詹姆斯·瓦塔斯顿提出的。于1859年,詹姆斯·克拉克·麦克斯韦主张气体的动热能由线性及旋转能量所等量摊分于1876年,路德维希·玻尔兹曼因表明了平均能量是被一系统中各独立分量所等分,而将原理进一步扩展。玻尔兹曼亦应用了均分定理去为固体比热容的杜隆-珀蒂定律提出了一个理论解释。
能量均分定理的历史与摩尔比热容的历史是密不可分的,两者都是在十九世纪时被研究的。于1819年,法国物理学家皮埃尔·路易斯·杜隆与阿勒克西斯·泰雷塞·珀蒂发现了所有室温下的固体比热容几乎都是相等的,约为6cal/(mol·K)。他们的定律曾在多年间被用作量度原子质量的一种技巧,然而,后来詹姆斯·杜瓦及海因里希·夫里德里希·韦伯的研究表明杜隆-珀蒂定律只于高温时成立;在低温时或像金刚石这种异常地硬的固体,比热还要再低一点。
气体比热的实验观测也引起了对均分定理是否有效的质疑。定理预测简单单原子气体的摩尔比热容应约为3cal/(mol·K),而双原子气体则约为7cal/(mol·K)。实验验证了预测的前者,但却发现双原子气体的典型摩尔比热容约为5cal/(mol·K),并于低温时下跌到约3cal/(mol·K)。詹姆斯·克拉克·麦克斯韦于1875年指出实验与均分定理的不合比这些数字暗示的要坏得多;由于原子有内部部分,热能应该走向这些内部部分的运动,使得单原子及双原子的比热预测值比3cal/(mol·K)7cal/(mol·K)要高得多。
第三个有关的不符之处是金属的比热。根据经典德鲁德模型,金属电子的举止跟几乎理想的气体一样,因此它们应该向(3/2)NekB的热容,其中Ne为电子的数量。不过实验指出电子对热容的供给并不多:很多的金属的摩尔比热容与绝缘体几乎一样。
数个说明均分失败原因的解释被提出了。玻尔兹曼辩护他的均分定理推导是正确的,但就提出气体可能因为与以太相互作用而不处于热平衡状态。由于与实验不符,开尔文勋爵提出均分定理的推导一定是不定确的,但却说不出什么不正确。反而瑞利勋爵提出一个更彻底的看法,说均分定理及实验时系统处于热平衡的假设这两者都正确;为使两者相符,他指出需要一个能为均分定理提供“从破坏性的简单中逃走的去路”的新原理。艾尔伯特·爱因斯坦就提供了这条去路,于1907年他表明了这些比热的异数都是由量子效应引起的,尤其是固体弹性模态能量的量子化。爱因斯坦用了均分定理的失败作为需要一个新物质量子理论的论据。瓦尔特·能斯特于1910年在低温的比热量度支持了爱因斯坦的理论,并引起了物理学家们对量子理论的广泛承认。