参见:遍历性、混沌理论和柯尔莫哥洛夫 - 阿诺德 - 莫泽定理
均分定律只对处于热平衡的遍历系统有效,这意味着同一能量的态被迁移的可能性必然一样。故此,系统一定要可以让它所有各形态的能量能够互相交换,或在正则系综中跟一热库一起。已被证明为遍历的系统数量不多;雅科夫·西奈的硬球系统是一个有名的例子。让隔离系统保证其遍历性——因而,均分定理——的需求已被研究过,同时研究还推动了动力系统混沌理论的发展。一混沌哈密顿系统不一定是遍历系统,尽管假定它是通常也足够准确。
有时候能量并不由它的各种形式所摊分,且此时均分定理在微正则系综不成立,耦合谐波振荡器系统就是在这状况下常被引用的一个例子。如果系统跟外界隔绝,那每一个正常模态的能量是恒定的;能量并不由一个模态传递到另一模态的。因此在这样一个系统中均分定理无效;每一个模态能量的量都被它的起始值所固定。如果能量函数中有着足够强的非线性量的时候,能量可能可以在正常模态中传递,使系统走向遍历并使均分定律有效。然而,柯尔莫哥洛夫 - 阿诺德 - 莫泽定理明确指出除非扰动够强,否则能量不会交换;如扰动小的话,最低限度能量会继续受困于一些模态中。
参见:紫外灾变、量子力学史和全同粒子
当热能kBT比能级间的差要小得多的时候,均分法则就会失效。均分此时不再成立,是因为能级组成平滑连续能谱的这个假设跟实际情况不近似,而这假设在上面均分定理推导中有用到。历史上,经典均分定理在解释比热及黑体辐射时的失败,对表明需要一套物质及辐射的新理论(即量子力学及量子场论)起了关键性的作用。