造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

阶数在递归数列中的定义

2022/07/16135 作者:佚名
导读:递归数列: 一种用归纳方法给定的数列。 递归数列举例:例如,等比数列可以用归纳方法来定义,先定义第一项 a1 的值( a1 ≠ 0 ),对 于以后的项 ,用递推公式an 1=qan (q≠0,n=1,2,…)给出定义。一般地,递归数列的前k项a1,a2,…,ak为已知数,从第k 1项起,由某一递推公式an k=f(an,an 1,…,an k-1) ( n=1,2,…)所确定。k称为递归数列的阶数

递归数列: 一种用归纳方法给定的数列。

递归数列举例:例如,等比数列可以用归纳方法来定义,先定义第一项 a1 的值( a1 ≠ 0 ),对 于以后的项 ,用递推公式an 1=qan (q≠0,n=1,2,…)给出定义。一般地,递归数列的前k项a1,a2,…,ak为已知数,从第k 1项起,由某一递推公式an k=f(an,an 1,…,an k-1) ( n=1,2,…)所确定。k称为递归数列的阶数。例如 ,已知 a1=1,a2=1,其余各项由公式an 1=an an-1(n=2,3,…)给定的数列是二阶递归数列。这是斐波那契数列,各项依次为 1 ,1 ,2 ,3,5 ,8 ,13 ,21 ,…,同样 ,由递归式an 1-an =an-an-1( a1,a2 为已知,n=2,3,… ) 给定的数列,也是二阶递归数列,这是等差数列。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读