BI(BusinessIntelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。
大数据(Big Data),指在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
不管定义如何不同,大数据与传统BI是社会发展到不同阶段的产物,大数据对于传统BI,既有继承,也有发展,从“道”的角度讲,BI与大数据区别在于前者更倾向于决策,对事实描述更多是基于群体共性,帮助决策者掌握宏观统计趋势,适合经营运营指标支撑类问题,大数据则内涵更广,倾向于刻画个体,更多的在于个性化的决策。
基于这个特点,大数据很容易在生产中形成基于个体的评估和闭环反馈网络,BI则由于偏向宏观而难以在生产中贯彻执行从而产生实际价值,因此,当前的大量的新数据应用领域,实际BI是没有覆盖的,比如RTB广告、智能制造、个性医疗等等。
当然纯粹从思想的角度讲,两者在概念上是可以实现统一的,都遵循数据-信息-知识-智慧这个脉络,甚至在更高的层次,两者也是可以统一的,比如这个定义:“世界上万事万物都在被数据化,形成一个与现实世界相关联的数据世界,人类可以利用数据化的方式,应对和解决生存和发展问题。”
因此很多人说BI跟大数据没区别,的确是这样,没必要抬高大数据,但由此认为两者价值也差不多,那也有问题,它忽略了“术”的不同,由此造成应用的巨大差别。
举个例子:神经网络理论几十年前就有,为啥直到现在才有深度学习突破性的进展,关键是其“术”的能力提高了,一定程度讲,大规模数据并行处理让这个理论焕发了新生。
理念是一回事,付诸实践是另一回事,因此,我们还是要从“术”的角度来阐述大数据与传统BI的区别,事实上,传统BI,由于其术的限制,已经达到了一定瓶颈。
传统BI厂家喊了多少年的“帮助企业做出明智的业务经营决策”,现在除了一堆报表系统,搞了一些决策树等统计算法,还剩下什么呢?传统企业引入了那么多的BI咨询,写了那么多报告,真正发生过价值的有多少?BI已死也并非空穴来风。