选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

磁致振荡细化金属凝固组织的方法及其装置

《磁致振荡细化金属凝固组织的方法及其装置》是 上海大学 于2005年10月27日申请的专利,该专利申请号为2005100307364,公布号为CN1757463,公布日为2006年4月12日,发明人是翟启杰、龚永勇、高玉来、李仁兴、井进贤。   
《磁致振荡细化金属凝固组织的方法及其装置》涉及一种磁致振荡细化金属凝固组织的方法及其装置,属金属材料复合处理技术领域。该发明方法通过特殊设计的电路及作用线圈而构成的振荡发生装置,导入超高频脉冲磁场,在金属熔体表面而非整个熔体内产生磁致振荡,对金属凝固过程产生作用直至凝固。《磁致振荡细化金属凝固组织的方法及其装置》的专用装置包装有高压脉冲电源1、容纳金属的砂型容器2、温度采集记录系统3、磁致振荡单层线圈4和导体5;高压脉冲电源1由充电系统6、高压脉冲电容7、高频开关8构成。该发明中使用的脉冲电源参数为:输出电压U=75~4000伏,脉冲宽度70~121微秒,实际作用频率f=0.017~2赫兹。 
2021年6月24日,《磁致振荡细化金属凝固组织的方法及其装置》获得第二十二届中国专利优秀奖。 
(概述图为《磁致振荡细化金属凝固组织的方法及其装置》摘要附图  )

磁致振荡细化金属凝固组织的方法及其装置基本信息

磁致振荡细化金属凝固组织的方法及其装置技术领域

《磁致振荡细化金属凝固组织的方法及其装置》涉及一种磁致振荡细化金属凝固组织的方法及其装置,属于金属材料变质处理技术领域。

查看详情

磁致振荡细化金属凝固组织的方法及其装置造价信息

  • 市场价
  • 信息价
  • 询价

振荡热熔标线

  • 按设计图纸;按面积计算
  • 众嘉壹
  • 13%
  • 广西众嘉壹贸易有限公司
  • 2022-12-07
查看价格

振荡热熔标线

  • 按平方计算
  • 众嘉壹
  • 13%
  • 广西众嘉壹贸易有限公司
  • 2022-12-07
查看价格

高亮振荡标线涂料

  • 25kg
  • t
  • 众嘉壹
  • 13%
  • 广西众嘉壹贸易有限公司
  • 2022-12-07
查看价格

振荡标线涂料

  • 25kg
  • t
  • 众嘉壹
  • 13%
  • 广西众嘉壹贸易有限公司
  • 2022-12-07
查看价格

高亮振荡标线涂料

  • 25kg
  • t
  • 众嘉壹
  • 13%
  • 广西众嘉壹贸易有限公司
  • 2022-12-07
查看价格

振荡压路机

  • YDZ12
  • 深圳市2007年7月信息价
  • 建筑工程
查看价格

振荡压路机

  • YDZ12
  • 深圳市2007年1月信息价
  • 建筑工程
查看价格

振荡压路机

  • YDZ12
  • 深圳市2007年5月信息价
  • 建筑工程
查看价格

振荡压路机

  • YDZ12
  • 深圳市2007年4月信息价
  • 建筑工程
查看价格

振荡压路机

  • YDZ12
  • 深圳市2007年1月信息价
  • 建筑工程
查看价格

振荡

  • 3、振荡器: 1 台.为涡旋振荡器.
  • 1台
  • 3
  • 中档
  • 含税费 | 含运费
  • 2022-09-27
查看价格

康氏振荡

  • 调速多用振荡器(摇床) KS
  • 4个
  • 2
  • 普通
  • 不含税费 | 不含运费
  • 2015-12-01
查看价格

伸缩探棒

  • Mag Plus
  • 5??
  • 1
  • 含税费 | 含运费
  • 2011-08-10
查看价格

数显振荡培养箱

  • BS-2F 生化、光照、振荡培养箱
  • 9420个
  • 1
  • 普通
  • 含税费 | 含运费
  • 2015-10-20
查看价格

数显振荡培养箱

  • BS-1E 生化、光照、振荡培养箱
  • 7781个
  • 1
  • 普通
  • 含税费 | 含运费
  • 2015-05-15
查看价格

磁致振荡细化金属凝固组织的方法及其装置专利背景

金属凝固组织细化有利于提高金属的综合性能,针对凝固组织的细化,常用的方法是孕育、变质处理、微合金化或采用物理搅拌等。随着凝固技术的不断发展,许多新兴的凝固组织控制工艺应运而生,其中外场处理对金属凝固组织和固态相变的影响非常显著,已取得了很大进展。外场处在节能节材条件下,减少对环境和材料本身的污染。

截至2005年10月,在外场处理中,主要有电源、磁场、振动、以及微重力和超重力场等,而电流和磁场又可分为非脉冲场和脉冲场,振动也可以分为超声波和机械振动。这些外场能不同程度地改善金属凝固组织,只是其作用机理各不相同。如:在用脉冲电流和脉冲磁场对金属熔体处理时,虽然脉冲电流的作用方式主要是让脉冲电流通过金属熔体来进行,而脉冲磁场的作用方式主要是让脉冲电流通过金属熔体外的磁场线圈来产生磁场作用,但由于电磁感应效应脉冲电流会同时在金属熔体中产生感应磁场。同样脉冲磁场也会同时在金属熔体中产生感应电流,因此脉冲电流和脉冲磁场虽然从原始的处理方式来看有所区别,但从最后的作用来看是非常相似的,因而它们的作用机理都同样可以从电流、磁场等方面来进行分析。

再如:用功率超声波对金属熔体处理时,我们既可用传统的方法来获得超声波,也可以在超强磁场中外加超音频感应电流,通过其相互作用使金属熔体表面产生超声振动从而获得非接触式超声波。使用传统超声波产生方法导入金属熔体时,因工具头与金属熔体的接触而造成相互影响,不利其对熔点较高的金属熔体进行处理。非接触式超声波虽然没有传统超声波因接触而产生的问题,但其对金属熔体处理与传统超声波对金属熔体处理的明显不同是其在金属熔体中又增加了超强磁场的作用。因此通过超强磁场产生的非接触式超声波对金属熔体的作用就是由功率超声波和超强磁场两者共用作用的结果。

在脉冲电流(或称电脉冲)凝固细晶技术中,电流直接通过金属熔体,这不仅影 响生产安全,而且当电流较大时会使金属表面产生强烈波动甚至飞溅,造成连铸结晶器内金属液卷渣。在脉冲磁场凝固细晶技术中,虽然电流不直接通过金属熔体,但是强磁场施加到金属熔体后,会在金属熔体产生感应电流,磁场强度较大时,强磁场也会使金属表面产生强烈波动甚至飞溅,造成金属液卷渣。

查看详情

磁致振荡细化金属凝固组织的方法及其装置附图说明

图1为《磁致振荡细化金属凝固组织的方法及其装置》磁致振荡细化金属凝固组织方法专用装置的正视示意图。

图2位为《磁致振荡细化金属凝固组织的方法及其装置》磁致振荡细化金属凝固组织方法专用装置的俯视示意图。

图3为图1中高压脉冲电源的简单电路图。

图4为未经处理的金属纯Al凝固组织的显微照片。

图5为经磁致振荡处理后的金属纯Al凝固组织的显微照片(U=1775伏,f=1.2赫兹)。

查看详情

磁致振荡细化金属凝固组织的方法及其装置常见问题

查看详情

磁致振荡细化金属凝固组织的方法及其装置专利荣誉

2021年6月24日,《磁致振荡细化金属凝固组织的方法及其装置》获得第二十二届中国专利优秀奖。

查看详情

磁致振荡细化金属凝固组织的方法及其装置实施方式

实施例1

参见图1,《磁致振荡细化金属凝固组织的方法及其装置》磁致振荡细化金属凝固组织方法中所用的一种专用装置,包括有高压脉冲电源1、容纳金属液的砂型容器2、温度采集记录系统3、磁致振荡单层线圈4和导体5;参见图2,高压脉冲电源1由充电系统6、高压脉冲电容7、高频开关8构成;高压脉冲电容7通过高频开关8由导线5与砂型容器2外的单层线圈4相连接,使高压脉冲电容7对单层线圈4放电,在金属熔体与放电线圈之间产生脉冲强磁场;装有金属熔体的砂型容器设置于环状的磁致振荡单层线圈的中心位置,其一侧设置有高压脉冲电源1,另一侧设置有自动化的温度采集记录系统装置3。

所使用的脉冲电源参数为:输出电压U=75~4000伏,脉冲宽度70~121微秒,实际作用频率f=0.017~2赫兹。

利用《磁致振荡细化金属凝固组织的方法及其装置》,对金属纯Al所作的实验,其试验情况及结果叙述如下:

将工业用纯度为99.99%的0号纯铝放置于电阻炉中进行熔化,在800摄氏度温度时保温10分钟,然后从砂型容器顶部注入;砂型的规格为φ50×150毫米;同时开启振荡发生电路,产生频率为1.2赫兹、电压为1775伏的磁致振荡,使其对熔体施振,直至金属铝熔体完全凝固。

经电子显微镜检测,可发现磁致振荡后的纯金属铝锭中绝大部分凝固组织为均匀细化的等轴晶。

参见图3和图4,可见未处理的纯铝金属凝固组织和经磁致振荡处理后的纯铝金属凝固组织有着明显的差别,后者具有大量分布均匀的细小晶体。

查看详情

磁致振荡细化金属凝固组织的方法及其装置发明内容

磁致振荡细化金属凝固组织的方法及其装置专利目的

《磁致振荡细化金属凝固组织的方法及其装置》的目的是提供一种磁致振荡细化金属凝固组织的方法及其专用装置。

磁致振荡细化金属凝固组织的技术不同于脉冲磁场和脉冲电流细化金属凝固组织的技术。磁致振荡细化金属凝固组织的技术也不同于超声波细化凝固组织的技术,前者无需设置与液态金属接触的变幅杆。与电磁感应超声波凝固细晶技术相比,无需向金属熔体内部导入强电流和强磁场。

磁致振荡细化金属凝固组织的方法及其装置技术方案

《磁致振荡细化金属凝固组织的方法及其装置》中磁致振荡细化金属凝固组织的方法,通过特殊设计的电路及作用线圈而构成的振荡发生装置,导入超高频脉冲磁场,在金属熔体表面而非整个熔体产生磁致振荡,对金属凝固过程产生作用直至凝固,改善金属凝固组织并使其细化;该方法的特征在于:被处理的金属熔体在相关技术参数特殊设计的磁致振荡发生装置作用下,在表面产生振荡;振荡发生装置由一高压脉冲电源作为供送电源,该高压脉冲电源由充电系统、高压脉冲电容、高频开关、单层放电线圈构成;通过高频开关的控制,使金属凝固熔体表面产生频率较高的强电磁脉冲振荡,在一定振荡强度下改变金属凝固组织形态,细化晶粒;所使用的脉冲电源参数为:输出电压U=75~4000伏,脉冲宽度70~121微秒,实际作用频率f=0.017~2赫兹。

《磁致振荡细化金属凝固组织的方法及其装置》磁致振荡细化金属凝固组织的方法所用的一种专用装置,其特征在于该装置包括有高压脉冲电源、容纳金属液的砂型容器、温度采集记录系统、磁致振荡单层线圈和导体;高压脉冲电源由充电系统、高压脉冲电容、高频开关构成;高压脉冲电容通过高频开关由导线与砂型容器外的单层线圈相连接,使高压脉冲电容对单层线圈放电,在金属熔体与放电线圈之间产生脉冲强磁场;盛有金属熔体的砂型容器设置于环状的磁致振荡单层线圈的中心位置,其一侧设置有高压脉冲电源,另一侧设置有自动化的温度采集记录系统装置。

《磁致振荡细化金属凝固组织的方法及其装置》方法的工作原理如下所述:

当砂型容器中的金属熔体处于凝固过程中时,高压脉冲电源中的高压脉冲电容在高频开关的控制下通过导线对设置于砂型容器外的环状单层线圈放电;在金属熔体与放电线圈之间产生脉宽极窄的脉冲强磁场,使金属熔体表面产生感应电流,感应电流 和脉冲强磁场相互作用使凝固熔体表面产生脉宽极窄的受迫振荡。在这种快速变化的窄脉冲作用下,感应电流会产生趋肤效应,只集中在金属熔体表面,同时感应电流还会屏蔽脉冲磁场,所以金属熔体内部既没有电流也没有磁场的作用。但在金属熔体表面,感应电流与磁场相互作用,使金属熔体表面受向内的压力,并向内部传播,而当遇到对面的表面时,压缩波就被反射,并变成弛波,这样金属熔体内就会产生磁致振荡。由于振荡频率为超声频率,振荡强度很大时,甚至可能形成空化气泡。同时通过高频开关的控制,可产生重复率较高的磁致脉冲振荡。作用结果可显著改变凝固组织形态,细化粗大晶粒组织,并消除比重偏析。

磁致振荡细化金属凝固组织的方法及其装置技术优点

(1)《磁致振荡细化金属凝固组织的方法及其装置》为新的外场处理技术,虽然其产生振荡的方法是通过电容放电产生脉冲磁场作用于熔体表面,但熔体内部既没有磁场也没有电流;

(2)《磁致振荡细化金属凝固组织的方法及其装置》方法所产生的非接触式振荡解决了接触式超声波导入高温金属熔液中所遇到的污染问题,同样《磁致振荡细化金属凝固组织的方法及其装置》方法无需向金属熔体内部导入强电流和强磁场,这就减少了工业化应用的障碍。

查看详情

磁致振荡细化金属凝固组织的方法及其装置权利要求

1.一种磁致振荡细化金属凝固组织的方法,通过特殊设计的电路及作用线圈而构成的振荡发生装置,导入超高频脉冲磁场,在金属熔体表面而非整个熔体产生磁致振荡,对金属凝固过程产生作用直至凝固,改善金属凝固组织并使其细化;该方法的特征在于:被处理的金属熔体在相关技术参数特殊设计的磁致振荡发生装置作用下,在表面产生振荡;振荡发生装置由一高压脉冲电源作为供送电源,该高压脉冲电源由充电系统、高压脉冲电容、高频开关、单层放电线圈构成;通过高频开关的控制,使金属凝固熔体表面产生频率较高的强电磁脉冲振荡,在一定振荡强度下改变金属凝固组织形态,细化晶粒;所使用的脉冲电源参数为:输出电压U=75~4000伏,脉冲宽度70~121微秒,实际作用频率f=0.017~2赫兹。

2.如权利要求1所述的磁致振荡细化金属凝固组织的方法所用的一种专用装置,其特征在于该装置包括有高压脉冲电源(1)、容纳金属液的砂型容器(2)、温度采集记录系统(3)、磁致振荡单层线圈(4)和导体(5);高压脉冲电源(1)由充电系统(6)、高压脉冲电容(7)、高频开关(8)构成;高压脉冲电容(7)通过高频开关(8)由导线(5)与砂型容器(2)外的单层线圈(4)相连接,使高压脉冲电容(7)对单层线圈(4)放电,在金属熔体与放电线圈之间产生脉冲强磁场;盛有金属熔体的砂型容器设置于环状的磁致振荡单层线圈的中心位置,其一侧设置有高压脉冲电源(1),另一侧设置有自动化的温度采集记录系统装置(3)。

查看详情

磁致振荡细化金属凝固组织的方法及其装置文献

金属及合金凝固组织的观察和分析 (2) 金属及合金凝固组织的观察和分析 (2)

金属及合金凝固组织的观察和分析 (2)

格式:pdf

大小:458KB

页数: 7页

金属及合金凝固组织的观察和分析 材科 095 陈国滔 40930366 引言: 金属及合金材料,在目前的情况下,应用较为广泛,且发展 前景十分广阔。本次实验让我们观察了不同环境下凝固出的金属及合 金的显微金相组织, 从观察和画组织示意图中了解纯金属铸锭粗型组 织的一般特点。 并从试验中总结,掌握了金相组织分析方法。了解实 际组织与组织示意图的关系,并能结合相图分析几种类型二元合金, 三元合金的结晶过程及结晶后的组织。 一、 实验样品及选取 1. 对纯铝铸锭粗型组织观察有影响的外界因素 铸模材料(金属模 /砂模) 铸模温度 模壁厚度 浇铸温度 2. 二元合金的显微组织观察 匀晶类型 样品: a)25%Ni+75%Cu ,铸造 /退火。 共晶类型 样品:a)70%Pb + 30%Sn ;b)38.1%Pb + 61.9%Sn ; c) 20%Pb + 80%Sn ;铸造。 包晶类型

第3章:金属及合金的凝固与组织 第3章:金属及合金的凝固与组织

第3章:金属及合金的凝固与组织

格式:pdf

大小:458KB

页数: 4页

第三章:金属及合金的凝固与组织 1. 凝固与结晶:金属和合金由液态转变为固态的过程称为凝固,凝固的过程主要是晶体或晶粒的生成和 长大过程,所以也称结晶。 2. 同分结晶:结晶出的晶体和母液的化学成分完全一样,或者说在结晶过程中只发生结构改组而无化学 成分的变化。 3. 异分结晶:结晶出的晶体和母液的化学成分不一样,或者说在结晶过程中,成分和结构同时都发生变 化,也称选分结晶。 4. 匀晶结晶:结晶过程中只产生一种晶粒,结晶后的组织有单一的均匀晶粒所组成,即得到单相组织。 5. 非匀晶结晶:结晶时由液体中同时或先后形成两种或两种以上的成分和结构都不相同的晶粒。 6. 凝固过程的宏观特征: 液体必须具有一定的过冷度(实际凝固温度与其熔点的差值) ,凝固才能自发进 行,凝固只能在过冷液体中进行;凝固过程中伴随着潜热的释放,这种潜热称为结晶潜热。 7. 晶核的自发形成——均匀形核 8. 非均匀形核

金属的凝固情况

凝固结晶过程中的成核 在金属凝固结晶过程中,如果是均匀成核的话,液态金属结晶在温度时的成核率为:

(1)

式中为晶粒中的原子数;,分别为玻耳兹曼及普朗克常数;为原子从液态转变为固态的激活能;为固相与液相之间的比界面能;为熔点;为熔化热;为过冷度。

在某一温度下,晶核只有在一定尺寸以上才能长大,这个尺寸的晶核叫临界晶核。一个球形临界晶核的尺寸"为:

(2)

从(1)、(2)式说明液态金属的成核率和临界晶核与金属熔点()、过冷度()、比界面能()及熔化热()有密切关系。

上述凝固结晶成核公式只是在均匀成核情况下才适用;但在多数情况下是非均匀成核,诸如容器器壁和熔体中的固态质点等都会促使晶核的形成,从而减小临界晶核的尺寸。因为外界固体可以降低固液相间的比界面能(),特别是那些与凝固金属晶体结构相同、点阵常数相近的固体质点,效果尤为显著。这种非均匀成核的情况,比均匀成核要复杂得多。此外,还有所谓动态成核,如受振动、摩擦或脉动压力等。

晶体长大 金属液体中出现首批大于临界尺寸的晶粒之后,结晶就开始了。结晶的发展除依赖新晶核的不断产生外,主要是靠现有晶核的长大。晶体在液体中的长大大致可以分为以下几种方式:晶-液界面粗糙的晶体的连续长大及光滑界面上的表面形核成长(二维晶核式的成长)或螺旋式长大。应说明这里所谓的粗糙或光滑,都是以原子尺度衡量的。

粗糙界面晶体的连续长大是以单原子扩散方式进行的。光滑界面上的表面形核成长依靠系统的能量涨落,使一定数量的液相原子几乎同时落在一光滑界面上的邻近位置而形成有一定大小的、单原子厚度的平面原子集团;当其尺寸超过临界值时,这个二维晶核能稳定存在并允许其他单原子在这晶核侧面上成长(图1)。螺旋式长大则是存在螺型位错的光滑界面晶体的成长过程(图2)。绝大多数金属结晶过程都是属于粗糙界面连续长大方式,而非金属或金属性较差的晶体,如Bi、Sb、Ga、Ge等则以光滑界面上的长大方式成长。不管晶体以何种方式成长,其长大速率均与液体的界面过冷度有关。

金属的凝固金属的凝固由于工程应用的金属材料几乎都是合金,因此在实际金属材料生产中所遇到的情况绝大多数是合金的凝固结晶。合金的结晶按其组成的金属元素种类及相图形式可分为共晶、包晶、偏晶等方式。这些合金的结晶过程属于异分结晶,即在凝固过程中成分和结构同时发生变化,随之产生不同程度和不同形式的偏析。晶体的形态也随结晶速度的不同而变化(见钢锭浇铸)。

晶体的形态 随着合金元素的含量、相图的形式与凝固条件的不同,可以得到三种不同的结晶结构(图3),即树枝状柱状晶、纤维状枝晶(胞状枝晶)和平面状晶。这三种不同的结构可通过不同的结晶速度与不同温度梯度来控制。从图4可以看出,当结晶速度一定时,随着温度梯度的增大,晶体形态由树枝状柱晶变为平面状,而当温度梯度一定时,随着结晶速度增大,晶体形态由平面状晶变为树枝状。纤维状枝晶则是介于两者之间的过渡形态。

金属的凝固金属的凝固合金元素的偏析 合金在凝固过程中,由于元素的再分配,发生合金元素的偏析。偏析的类型很多,大体分为宏观偏析与微观偏析。宏观偏析如钢锭中的 V型偏析和A型偏析等,主要是由于液态金属的宏观流动造成的。

微观偏析包括枝晶偏析、晶界偏析等。发生枝晶偏析的过程可从合金相图来解释,如图5所示。成分为的一种由A、B两组元组成的液态合金,当温度下降到时,开始凝固出成分为的固体,组元B的含量比合金成分为低,而剩余液体含B的数量增高,偏离了原来的平均成分,因而不同温度凝固出来的固体成分是不一致的,这样就形成了合金元素的偏析。假定凝固的固体不发生扩散,而剩余的液体扩散完全,经常保持均匀,则温度为时,固-液相界面的固相与液相成分分别为及,为元素在两相中的分配系数。假定为常数,则一个平均成分为的合金,在固-液界面的合金元素的浓度为:

式中为凝固相的体积分数。

金属的凝固一种元素在一个合金中的值愈大(当<1时),分配就愈均匀,即偏析愈小。所以(1-)代表元素的偏析程度,或发生液析的倾向性。表1为不同元素在钢中的分配系数及液析倾向性。可见C、O、S、P等元素造成钢锭液析的倾向最为显著。

金属的凝固金属在正常的凝固过程中,一般以树枝状结晶的形式先生长成骨架,而后液体金属填补于树枝之间,从而造成严重的枝晶偏析。树枝状晶可分为初级、次级及三级,如图6所示。初级枝晶轴平行于晶粒生长方向,即沿柱晶方向。枝晶间距愈大,元素的偏析程度愈大,有时高达几十倍,在严重偏析区形成易腐蚀的低熔点区,叫点状偏析。

金属的凝固铸锭结构 在凝固时没有大量气体析出的情况下(如镇静钢),金属铸锭的结构大致可以分为三个区域:细等轴晶层(也称激冷外壳)、柱状晶区和粗等轴晶区(图7)。液态金属浇铸在铁模中后,接触模壁的一层金属由于过冷而形成大量晶核,最后发展成为细小的等轴晶层;尔后,液体金属的冷却主要靠缓慢的传热,晶体便沿着平行于热流方向朝与热流方向相反的方向生长,成为垂直于模壁向中心生长的柱状晶。固液相界面原子的堆垛以密排最稳定,从而柱晶的取向便不是任意的,而是随金属的晶体结构而不同,如表2所示。一般来说,高温浇铸,金属的高纯度及高温度梯度都促进柱晶形成。锭的中心为粗等轴晶,这是因为温度梯度不够、温度下降缓慢、生核率低所致。图7为一典型铸锭的横断面结构。最近有人认为等轴晶的形成是金属对流冲碎了某些柱晶的结果,因为他们发现没有液态金属的对流便没有等轴晶。

金属的凝固金属的凝固铸锭中存在的偏析,除枝晶偏析、晶间偏析等微观偏析外,还有V型偏析、A型偏析等宏观偏析(图8)。造成铸锭宏观偏析的原因是凝固过程的收缩,树枝晶间液体的密度不同以及固液相之间的密度差、温度差造成的密度不同等所引起的液体对流。在实际生产中,除合金组元的偏析外,铸锭内还存在着各种杂质的偏析。可以通过改变铸模设计、控制浇铸条件和随后的高温扩散退火等来减轻合金元素的偏析。由于体积收缩造成的缩孔和气孔则可通过改变冷凝条件来控制其数量和分布(见钢锭浇铸)。

金属的凝固铸件缺陷的形成 从热力学观点,金属的凝固总是存在原子尺度的晶体缺陷,如点缺陷、线缺陷(位错)及面缺陷(层错与晶界等),所以即使是精心培养生长出来的单晶,也很不完整,难以避免微观缺陷的出现。

从工程观点来看,金属在凝固过程中,由于液相和固相比容的变化(对常见金属来说,固相比液相的比容小2~6%),所以在凝固后造成缩孔、疏松及由内应力引起的内裂;其次是气体在两相中的溶解度也不相同,如当氢分压为一个大气压时,铁在熔点附近时每100克液体铁可溶氢27毫升,而在固态时只溶13毫升,因而液体在凝固过程中就析出气体,形成气孔及疏松。再者,脱氧产物及外来的非金属夹杂物都是影响铸件或铸锭质量的重要因素;这些可以通过凝固过程的控制来改善,但有些是不能完全消除的,如树枝晶间的显微疏松等。为此,20世纪70年代以来采用热等静压处理铸件,很有成效。如高温合金铸件放入一个高温高压(如1200℃、1000大气压)容器中,进行一定时间的保压,象疏松及内裂等缺陷可以闭合起来,从而提高铸件质量(见等静压加工)。

晶粒大小与形状对铸锭的热加工成材率和质量有很大影响,对铸件的性能起决定性作用。

通过对凝固晶粒度的控制,可发展具有优异性能的新材料。利用外界质点的非均匀成核的原理,可以在熔体中加入结晶细化剂或在铸模表面上涂一层晶粒细化剂,或采用各种降低固液相界面能及增加过冷度的办法来使晶粒细化。在铝合金中加入少量TiC或TiN,在钢中加入稀土元素或稀土化合物,镁合金在浇铸前过热到 850℃,使合金中形成高熔点化合物(如MnAl等),都可成为结晶核心,细化晶粒。在铝硅合金中经常出现粗大共晶,降低材料的力学性质,加入Na0.01%于液态合金中,就可降低共晶硅相的成核界面能而使共晶细化,这就是所谓“变质处理”(modification)。其他如高硅铸铁中加入微量镁或铈后,形成硫化物和氧化物,作为石墨核心而球形生长,成为球墨铸铁。有些高温合金零件,为了改善冷热疲劳性能,希望铸件表面有一层细小晶粒,而内部晶粒不变,则在精密铸造模壳表面涂上一层细化晶粒的孕育剂,如氧化钴,它被液体合金中的活泼元素如钛、铬、铝还原成金属钴,成为结晶核心,产生细化晶粒的作用。

另一个细化晶粒的方法是快速凝固。液态金属在快速冷却条件下 (冷却速度一般大于10~10K/s)生成微米数量级的微晶,并且可使偏析极大程度地减轻。有的合金体系还可成为非晶态。这些材料都具有优异的性能(见快冷微晶合金,非晶态金属)。

平面凝固与定向凝固是改善凝固条件的又一项措施。当热流沿单向传走时,凝固便沿着一个方向进行,这就是定向凝固。如果只有一个晶粒这样生长便成为单晶,多个晶粒平行生长即成为柱状晶。从三种不同类型的结晶形态来看,平面状晶的偏析程度最小,因此,减少偏析的另一种措施就是控制结晶速度与温度梯度,使其达到平面凝固的条件,不产生枝晶,也就不存在枝晶偏析了。有利于平面凝固的条件是合金元素含量低,温度梯度高,元素分配系数接近于1,液相线的斜率低,晶粒长大速度低,温度梯度与结晶速度的比值高(高温度梯度)等。相反的条件利于柱状枝晶的形成,中间状态则促使形成胞状枝晶。在平面凝固条件下,单相合金可以成为均匀固溶体,复相合金可形成复合材料,图9为双相定向共晶。定向共晶是当前材料发展的新动向。因为材料是热力学平衡状态下形成的,相界面稳定性高。在某些合金系中,有的相接近完整晶体,如在Cu-Cr共晶中,Cr纤维的强度高达7000kgf/mm,接近完整晶须的强度。

金属的凝固从节约能源和提高劳动生产率的角度来看,应该大力发展以铸代锻,以及从液体金属直接轧板、直接抽丝等工艺方法。同时,为了使铸态金属的质量赶上或超过锻材,也必须采取各种技术措施,除了上述控制晶粒度、控制偏析等措施外,正在发展各种铸造新工艺。流变铸造便是其一。

流变铸造的原理就是金属凝固进入到两相区时进行搅动,打碎已形成的枝晶,这样不但细化了晶粒,也减少了合金元素的偏析。如果将这种铸块加热到半熔化状态挤压成型,可以得到性能优越的产品。特别值得注意的是因为免去液态金属与模具的直接接触,减少了模具的冷热疲劳,使模具寿命提高,从而有可能解决当前黑色金属压铸模具寿命过短的问题。

不论铸造工艺如何发展,某些生产量很大的金属,如钢、铝、铜等,及难以铸造成材的金属,如钨、钼等,仍要先铸成锭后加工成材。因而仍需发展高效率、低成本及高质量的铸锭新工艺,如钢的连续铸锭、真空自耗、电渣重熔等。铸造成型工艺当前是朝着更加机械化、自动化及计算机控制等方向发展。为了达到这些目的,必须进一步研究液态金属各种参数与凝固过程的计算机模拟,宏观及显微缺陷的形成过程的机理等。

查看详情

金属的凝固定义

金属由液态向固态的相变过程。除某些液态金属合金在激冷条件下“冻结”成具有无定形结构的非晶态金属外,金属的凝固在多数情况下,是晶体或晶粒的生成和长大的过程。金属凝固过程还伴随着体积变化、气体脱溶和元素偏析等现象。绝大部分金属材料是在液态中纯化(去气、去杂质等),调整成分,而后浇铸成锭,再加工成材,或直接铸造成部件。因此,金属的凝固不但决定了金属和合金的结构、组织和性能,而且还影响着以后的塑性加工和热处理。

金属的凝固所涉及的范围比较广泛,包括从宏观上研究铸锭及铸件的宏观结构、缺陷及宏观偏析;同时研究其显微结构,包括晶粒大小、取向和形状,晶内树枝状结构,以及非金属夹杂物、显微疏松和其他亚微观缺陷;也从原子尺度研究合金元素的微观偏析,微观晶体缺陷(如位错、空位等)的形成,晶粒成核与长大的原子堆垛过程等等。

研究金属凝固的理论基础是合金热力学、合金相图、传热、传质以及相变和金属中的扩散等。

金属的凝固过程主要是在一定的过冷度下,通过晶粒的成核和长大,并伴随着潜热的释放来实现的。而金属结晶过程又可以分为同分结晶和异分结晶两大类。同分结晶即结晶出的晶体与金属母液的化学成分完全一样,这通常是在纯金属以及相图中固、液相线相重合的合金成分上发生。异分结晶是结晶出的晶体与金属母液的化学成分不一样,即在结晶过程中伴随有成分的变化,绝大多数实际应用合金的结晶都属于这一类。首先研究没有成分变化的同分结晶的情况:

查看详情

凝固过程凝固过程的传热

高温金属熔体在凝固时的相变是原子由无序状态向有序排列的转变过程。伴随相变反应同时还发生释放热能和热能传递等传热过程、元素偏析和气体析出等传质过程。凝固过程金属体积会出现显著变化。

一般铁合金凝固的温度低于其熔点。金属开始凝固的温度低于其熔点的现象称为过冷。熔体的过冷度随着冷却速度的提高而增大。金属凝固是晶粒的形成和长大的过程。这一过程的驱动力是固相和液相的自由能差值。熔体只有具备一定的过冷度才具备凝固过程的所需要的驱动力。过冷度越高驱动力越大,金属凝固速度越快。形核的阻力是液相和固相的界面能,即形核的表面能。

在冷却速度非常高时液态金属无序的原子结构会保存下来生成具有无定形结构的非晶态合金。非晶态合金又称金属玻璃,通常是由铁、镍、硅、硼元素等铁合金制成。由于原子排列的特殊结构,非晶态合金不仅具有优异的耐腐蚀性、高强度、高硬度、高耐磨性,而且还表现出优良的软磁性能以及超导特性。

一些杂质元素在金属固相中的溶解度比液相低。因此,在合金由液相向固相转变时,溶解度低的杂质元素会从固相分离出来,富集在液相中,使铁合金产出现偏析。

大多数铁合金的固相密度比液相小5%~10%。凝固后铁锭外表面会出现收缩或缩孔,内部出现疏松及裂隙。气体元素在固相中的溶解度随温度降低而降低。凝固时分离出来的气体被固化在合金锭内部形成明显的气孔或结构疏松。

金属在凝固时放出的热能数值上相当于其熔化热。铁合金凝固过程放出的热能通过热传导和热辐射传递给锭模和周围环境。金属硅的熔化热约为铁、锰等黑色金属熔化热的5倍。金属硅和硅铁等硅系铁合金凝固时放出的大量热能显著降低其冷凝速度,使硅系铁合金更易出现元素偏析。此外,硅系铁合金凝固放热传递到锭模,使锭模温度过高,会导致锭模损毁。为了加快锭模冷却需要使用模铁比高的锭模浇注硅系铁合金。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639