选择特殊符号
选择搜索类型
请输入搜索
脉冲电沉积过程中,除可以选择不同的电流波形外,还有三个独立的参数可调, 即脉冲电流密度、脉冲导通时间和脉冲关断时间。
采用脉冲电沉积时,当给一个脉冲电流后,阴极-溶液界面处消耗的沉积离子可在脉冲间隔内得到补充,因而可采用较高的峰值电流密度,得到的晶粒尺寸比直流电沉积的小。此外,采用脉冲电流时由于脉冲间隔的存在,使增长的晶体受到阻碍,减少了外延生长,生长的趋势也发生改变,从而不易形成粗大的晶体。电沉积纳米晶较多采用脉冲电沉积法,所用脉冲电流的波形一般为矩形波。
脉冲电沉积与直流电沉积相比,更容易得到纳米晶镀层。脉冲电沉积可通过控制波形、频率、通断比及平均电流密度等参数,从而可以获得具有特殊性能的纳米镀层。
电沉积过程中非常关键的步骤是新晶核的生成和晶体的成长,这两个步骤的竞争直接影响到镀层中生成晶粒的大小,其决定的因素是由于吸附表面的扩散速率和电荷传递反应速率不一致造成的。如果在阴极表面具有高的表面扩散速率,由于较慢的电荷传递反应引起的少量吸附原子以及低的过电势将有利于晶体的成长;相反,低的表面扩散速率和大量的吸附原子以及高的过电势,都将增加成核速率。研究表明,高的阴极过电势、高的吸附原子总数和低的吸附原子表面迁移率是大量形核和减少晶粒生长的必要条件 。
喷射电沉积是一种局部高速电沉积技术,由于其特殊的流体动力学特性,兼有高的热量和物质传递速率,尤其是高的沉积速率而引人注目。电沉积时,一定流量和压力的电解液从阳极喷嘴垂直喷射到阴极表面,使得电沉积反应在喷射流与阴极表面冲击的区域发生。电解液的冲击不仅对镀层进行了机械活化,同时还有效地减少了扩散层的厚度,改善了电沉积过程,使镀层组织致密,晶粒细化,性能提高。
喷射电沉积法能有效地提高电沉积极限扩散电流密度和沉积速率,并能有效提高镀层的硬度等,将脉冲技术引入喷射电沉积中,利用脉冲喷射电沉积,可以比较容易地得到纳米晶材料。已经有人利用喷射脉冲技术制备出纳米镍层 。
以物质来源为主要考虑因素的分类,沉积岩被分成三类,即由母岩风化物质、火山碎屑物质和生物遗体形成的不同沉积岩。 母岩分化产物形成的沉积岩是最主要的沉积岩类型,包括碎屑岩和化学岩两类。碎屑岩根据粒度细...
石灰岩.砂岩、页岩 按沉积物的颗粒大小,沉积岩可分为砾岩、砂岩、页岩、等,石灰岩也是。沉积岩里面常常能找到古生物遗体、遗迹,沉积岩是地球历史的记录。 沉积岩,又称为水成岩,是三...
用途:1、沉积岩记录了地球演化历史 地球约有46亿年历史,最古老沉积岩36亿年,这36亿年的沉积记录对研究地球的演化和发展有着十分重要的理论价值。 2、沉积岩(物)蕴藏着占世界矿产资源总储量的...
纳米复合电沉积技术是将纳米微粒嵌镶于金属镀层中,使纳米微粒与金属离子共沉积的过程。将纳米微粒独特的物理及化学性能赋予金属镀层,使其具备很多优异性能,如硬度、耐磨性、耐蚀性和润湿性等。可以预言,纳米复合镀技术必将得到迅速发展和应用。
纳米复合镀层与普通镀层相比,具有以下特点:
(1) 由纳米微粒与基质金属组成的复合镀层,具有多相结构,并具有两者的优点,使镀层性能发生巨变。
(2) 纳米微粒与基质金属共沉积过程中,纳米微粒的存在将影响电结晶过程,使基质金属的晶粒大为细化,基质金属的晶粒成为纳米晶。
(3) 纳米复合镀层的纳米微粒质量分数通常都在10%以内。
影响纳米复合镀层的因素主要有微粒表面的有效电流密度、纳米微粒的尺寸和形状、电流密度、搅拌强度、镀液类型、添加剂、工艺参数、极化度等。另外,纳米微粒的表面状态对沉积层的性能也有很大的影响,添加适量的添加剂可以改善微粒的润湿性和表面电荷的极性,使纳米微粒有利于向阴极迁移、传递和容易被阴极表面俘获。纳米微粒与金属离子共沉积的机理,都采用复合电镀的机理来描述,实际上复合电镀的机理至今还不十分清楚,因此,用它来解释纳米复合镀的机理是牵强附会的。为了便于理解,通常将纳米复合电沉积过程大致分为3个步骤:
(1) 悬浮于镀液中的纳米微粒,由镀液深处向阴极表面输送,其主要动力是搅拌形成的动力场;
(2) 纳米微粒粘附于阴极表面,其动力学因素比较复杂,与微粒、电极基金属、镀液、添加剂和工艺条件等因素有关;
(3) 纳米微粒被阴极上析出的基质金属牢固嵌镶在一起 。
电刷镀的主要特点是镀液浓度高、阴阳极间距小,并可相对运动,可允许使用较高的电流密度,进而优化了结晶过程,限制了生成粗晶和粒状结晶的可能,细化了结晶,因而镀层结晶细密,孔隙少,耐蚀性十分优异。电刷镀复合电沉积原理与复合镀的沉积机理基本相同,但在工艺上采用电刷镀技术,而镀液中主盐浓度较高。
电刷镀纳米复合镀层虽然在工程领域得到了一定的应用,徐滨士等人曾对电刷镀纳米微粒复合镀层的组织及沉积过程进行了研究,在快速镀镍液中加入粒径为30nm 的Al₂O₃纳米微粒,得到纳米微粒均匀分布的复合镀层,且指出纳米复合镀层的生长过程与纯镍镀层相似,可分为三个阶段:均匀生长阶段、微凸体形成阶段和树枝状晶形成阶段。
将脉冲技术用于纳米电刷镀Ni₂SiO₂复合镀层。与直流电镀相比,只要选择适宜的脉冲参数,就能进一步提高纳米复合镀层的性能,使镀层表面更光亮,晶粒更细,更均匀、致密、孔隙更小,同时还提高了强度和耐蚀性。
所谓超声波是指频率范围在20kHz~100kHz的机械波,波速一般约为1500 mPs 。超声波的波长(10cm~0. 01cm) 远大于分子尺寸,超声波本身不能直接对分子起作用,而是通过周围环境的物理作用转而影响分子,所以超声波的作用与其作用的环境密切相关。利用超声波能够加速和控制化学反应,提高反应率,改变反应途径,改善反应条件以及引发新的化学反应。
超声场对电沉积晶材料的作用可归功于超声空化。液相中制备纳米粒子必须保证在成核期生成大量的晶核,在晶核生长期控制晶核的长大。超声的空化效应对这两个过程都起到了很大的促进作用。在成核期,临界晶核的形成需要一定能量,即成核能,成核能可借助于体系内部的能量起伏来获得。
在超声场作用下,局部的高能量加大了单位体积的能量起伏,使成核能大大增加,从而使体系的亚晶核容易达到所需要的成核能,成核几率增大,瞬间可生成大量的晶核。在晶核的生长期,超声空化可有效控制晶核的长大。超声场下空化泡表面可作径向均匀的非线性振动,它能向反应液辐射次级均匀的球面波。当气泡移动到微粒的表面上,这种球面波就会在该微粒的表面上引起反应液的显微涡动,可实现介质均匀混合,消除电解液的局部浓度不均,从而控制晶核长大。超声波电沉积中的超声振动及产生的射流能使沉积在阴极表面的金属迅速脱离阴极表面,并随溶液的流动分散到整个溶液中,防止微粒的长大 。
电沉积纳米晶的方法与其它方法相比具有许多优点。电沉积纳米晶与普通晶体相比还具有很多优异特性,如耐蚀性、硬度、耐磨性、延展性、电阻、电化学性能以及催化活性等,因而它在科学技术和工业上有着广泛的应用前景。在纳米晶材料研究中主要进行两方面的工作:一是用电沉积法开发新材料,制取高性能、微型、环保型产品;二是改善及取代传统材料,提高及改善产品质量和性能。
总之,纳米技术和纳米晶材料有着极其广泛的应用前景,它将会对21世纪的科学技术和工业的发展带来新的飞跃 。
脉冲电沉积纳米晶镍铁铬合金_电沉积工艺
第 13 卷第 2期 Vol. 13 No. 2 中国有色金属学报 The Chinese Journal of Nonferrous Metals 2003 年 4月 Apr. 2003 文章编号 : 1004 0609(2003)02 0511 06 脉冲电沉积纳米晶镍 铁 铬合金 ( ) ! !! 电沉积工艺 龚竹青 , 邓姝皓 , 陈文汨 ( 中南大学 冶金科学与工程学院 , 长沙 410082) 摘 要 : 在恒电位脉冲的条件下 , pH 控制在 0. 8~ 1, 阴极电流密度为 12~ 20 A? dm- 2, 周期为 25 ms, 占空 比为 0. 3, 镀液温度维持在 20~ 30 # , 采用循环镀液的方法 以避免二价铬离 子的干扰 , 从含三 价铬离子 的镀液中 电沉积 出 镍 铁 铬合金。 X 射线衍射结果表明沉积的镀层为晶体结构 , 存在 较强的 ( 111)织构。
高频脉冲电沉积镍钴合金镀层的硬度研究
29 2 Vol.29 No.2 2009 4 Journal of Chinese Society for Corrosion and Protection Apr. 2009 1 2 1 1 1 (1. 100044 2. 100081) : CoSO 4 Co SEM XRD Co Co 55 mass% Co Co fcc : : TQ153.2 : A : 1005- 4537(2009)02 - 0141- 04 1 Ni Ni [1~3] Co Co– Ni Co Myung [4] Golodnitsky [5] Co Co fcc Co hcp fcc Co fcc hcp fcc Co Co 142 29 1 : 143 144 29
沉积物在潮汐的作用下可以形成各种沉积底形。流态和底形序列的概念基本上可以应用于潮流沉积。但是,潮汐是周期性的双向水流运动,因此其沉积构造也往往具有韵律性和双向性的特点。这是鉴定潮汐沉积的充分标志。
潮流沙丘(dune)是潮汐作用带主要的底形类型。在主潮流的速度足以推动沙丘运动的情况下,形成交错层理。其中常有几乎等间距的不连续面,标志着反向的次潮流的存在。如果次潮流也足够强,就会侵蚀沙丘,形成微向潮流方向倾斜的再活动面,并推动沉积物向相反方向运动,形成反向的交错层理。潮流转向的拐点,流速为零。在潮流速度大幅度减缓的时期,在背流面形成泥皮,多为以粪粒形式出现的泥质(Dalrymple,1992)。由于被次潮流所搬运的沉积物为量少,故次潮流形成的泥皮与主潮流形成的泥皮十分接近,构成双黏土层。波浪作用较强或发生旋转潮流的地方,没有零速期,也就没有泥皮。在一个主潮期内形成的砂质细层系,上下界面由再活动面或泥皮限定,称为潮积束。
由周期性大潮引起的潮流速度的变化,势必导致沉积层厚度的旋回性变化,形成所谓的潮汐韵律。潮汐韵律层的砂层是由沙波或沙丘侧向迁移形成的潮积束,而泥层则是悬浮体垂向加积形成的泥皮。由砂层到泥皮通常为渐变过渡,没有截然的界限,而由泥层到砂层的转变通常为突变接触。
鱼骨形交错层理是一种比较典型的潮流沉积构造。呈板状双向交错,状似鱼骨。鱼骨形交错层理是判别潮流沉积的充分条件,但不是必要条件。在潮流有主次之分的情况下,一般都形成单向层理或以单向为主、逆向为辅的潮汐层理,鱼骨形层理并不多见。
在潮流较弱的情况下,底形规模较小,以波纹为主。潮流速度较高时形成的砂质波纹与潮汐转向期形成的泥皮在纵向上更迭,即形成压扁层理或透镜状层理。如果次潮流也较强,则在砂岩透镜体内可以见到反向的交错层理。砂泥比、砂泥层的厚薄和沉积物的粒度大小都取决于潮流的强弱。
潮汐层理在绝大多数情况下是鉴定潮汐沉积的充分必要条件。这种情况在其他的沉积物中并不多见。
锌电解沉积(electro winning of zinc)是指采用不溶阳极,在直流电作用下使硫酸锌电解液中的锌沉积在阴极上的过程,为湿法炼锌流程的重要组成部分 。
沉积物亦可以由风(风成过程(eolian processes))及冰川搬运。沙漠的沙丘及黄土是风成运输及沉积的例子。冰川的冰碛石(Moraine)矿床及冰碛(Till)是由冰所运输的沉积物。简单的重力崩塌制造了如碎石堆、山崩沉积及喀斯特崩塌特色的沉积物。每一种类型的沉积物有不同的沉降速度,依据其大小、容量、密度及形状而定。
江河、海洋及湖泊均会累积产生沉积物。这些物质可以在陆地沉积或是在海洋沉积。陆生的沉积物由陆地产生,但是也可以在陆地、海洋或湖泊沉积。沉积物是沉积岩的原料,沉积岩可以包含水栖生物的化石。这些水栖生物在死后被累积的沉积物所覆盖。未石化的湖床沉积物可以用来测定以前的气候环境。
沉积物在人造防波堤累积,因为防波堤减慢水流速度令水流可携带沉积物减少。
冰川搬运石块。那些石块在冰川退缩时会沉积起来。