选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

多晶硅微机械构件材料力学行为及微机械粘附问题研究

《多晶硅微机械构件材料力学行为及微机械粘附问题研究》是清华大学丁建宁发表的论文,由温诗铸指导。

多晶硅微机械构件材料力学行为及微机械粘附问题研究简介

《多晶硅微机械构件材料力学行为及微机械粘附问题研究》是清华大学丁建宁发表的论文,由温诗铸指导。

副题名

外文题名

Studies on mechanical behaviors of microfabricated polysilicon thin films and sticking problem in MEMS

论文作者

丁建宁著

导师

温诗铸院士指导

学科专业

机械设计与理论

学位级别

d 2001n

学位授予单位

清华大学

学位授予时间

2001

关键词

微机械 多晶硅 微型机械

馆藏号

TH122

唯一标识符

108.ndlc.2.1100009031010001/T3F24.012002678601

馆藏目录

2002\TH122\97

查看详情

多晶硅微机械构件材料力学行为及微机械粘附问题研究造价信息

  • 市场价
  • 信息价
  • 询价

机械联锁(JSL)

  • 水平、垂直位置联锁(缆绳式)
  • 南冠
  • 13%
  • 广东南冠电气有限公司
  • 2022-12-07
查看价格

机械泄压口

  • XJXF-0.12-J
  • 广州兴进
  • 13%
  • 广州兴进消防设备有限公司
  • 2022-12-07
查看价格

机械联锁(组)

  • E2.2-E6.2 3 个断路器之间(2常用电源+ 母排)型式C
  • ABB
  • 13%
  • ABB(中国)有限公司呼和浩特分公司
  • 2022-12-07
查看价格

机械联锁(组)

  • E2.2-E6.2 3 个断路器之间(2常用电源+ 母排)型式C
  • ABB
  • 13%
  • ABB(中国)有限公司哈尔滨分公司
  • 2022-12-07
查看价格

机械四通

  • 公称直径DN(mm):150×80
  • 13%
  • 佛山市南海区胜吉消防器材商行
  • 2022-12-07
查看价格

强夯机械

  • 夯击能量1200kNm
  • 台班
  • 汕头市2012年4季度信息价
  • 建筑工程
查看价格

强夯机械

  • 夯击能量2000kNm
  • 台班
  • 汕头市2012年3季度信息价
  • 建筑工程
查看价格

强夯机械

  • 夯击能量2000kNm
  • 台班
  • 汕头市2012年2季度信息价
  • 建筑工程
查看价格

强夯机械

  • 夯击能量3000kNm
  • 台班
  • 汕头市2012年2季度信息价
  • 建筑工程
查看价格

强夯机械

  • 夯击能量3000kNm
  • 台班
  • 汕头市2012年1季度信息价
  • 建筑工程
查看价格

多晶硅光伏组件

  • 湖南兴业 260Wp
  • 576块
  • 1
  • 中高档
  • 含税费 | 含运费
  • 2021-06-01
查看价格

多晶硅光伏组件

  • 湖南兴业 260Wp
  • 576个
  • 1
  • 湖南兴业
  • 中档
  • 含税费 | 含运费
  • 2019-05-15
查看价格

多晶硅光伏组件

  • Jkm270PP-60,尺寸 1650mm×992mm,功率270Wp
  • 1块
  • 2
  • 中档
  • 不含税费 | 含运费
  • 2017-10-26
查看价格

光伏组件(多晶硅)

  • 260Wp,0+3%,总容量93.6kwp
  • 360块
  • 3
  • 中国英利、南玻、天合
  • 不含税费 | 不含运费
  • 2016-03-16
查看价格

多晶硅光伏组件

  • 型号:YL235P-29b
  • 182m²
  • 1
  • 中高档
  • 不含税费 | 含运费
  • 2022-04-13
查看价格

多晶硅微机械构件材料力学行为及微机械粘附问题研究常见问题

查看详情

多晶硅微机械构件材料力学行为及微机械粘附问题研究文献

机械专业材料力学课程教学改革研究 机械专业材料力学课程教学改革研究

机械专业材料力学课程教学改革研究

格式:pdf

大小:215KB

页数: 3页

材料力学课程是机械专业必修的专业基础课,随着高校人才培养模式的改变,材料力学教学改革势在必行.本文结合材料力学教学实际情况和个人教学经验,从改变教学理念、优化教学内容和改进教学方法3方面,进行了可行性研究,提出了相应实施方案.

独立学院机械类专业力学课程教学改革探索——以材料力学为例 独立学院机械类专业力学课程教学改革探索——以材料力学为例

独立学院机械类专业力学课程教学改革探索——以材料力学为例

格式:pdf

大小:215KB

页数: 1页

材料力学是一门重要的专业基础课程,需要不断开展教学改革、提高教学水平。本文针对独立学院材料力学教学中出现的问题,围绕提高教学质量、激发学习积极性,从教学内容、教学方法和实验教学改革,提高学生的分析能力,培养学生的实践能力和解决实际工程问题的能力,具有一定的启发意义和指导作用。

微切削研究课题

(1)微切削应用基础研究:包括微型零件切削加工装备关键技术的研究 ,主要研究高速主轴系统,精密工作台的定位、运动及控制技术 ,复合微切削加工设备与技术;微切削刀具材料和刀具制作技术的研究;微切削刀具、工件的快速装夹、测试及微切削加工过程的监控技术 。

(2)微切削机理的研究:主要研究热 —力耦合应力作用下的微切削不均匀变形场, 研究微尺度下工件材料的本构方程 , 分析微切削变形区的尺寸效应、不均匀应变 、位错等对剪切变形应力和剪切变形能的影响 ;研究最小切削厚度对切屑形态、已加工表面形成、切削力 、切削温度等的影响及工件材料微观组织结构对表面粗糙度和次表面损伤的影响 ,建立微切削加工理论和技术体系;研究多尺度微细切削模拟仿真技术, 奠定微切削加工技术的应用基础。

(3)微切削工艺研究:包括各种新材料如钢铁、钛合金 、不锈钢、铝合金、陶瓷和其它非金属材料及各种复合材料的微切削加工工艺 , 微切削 CAD CAM技术 。

(4)微切削加工技术的经济性和可靠性研究。

查看详情

微网线路保护微网保护需考虑问题

与大电网不同,微网的保护与运行具有自己的特殊性。

微网线路保护微网潮流

内部的结构决定了微网的双向潮流特性,传统保护中的选择性原则在微网保护中较难满足。

微网中一般根据不同电源的特点采取不同的控制方式,对于风力发电和光伏发电这些输出功率受天气影响比较大的电源,若通过配备储能装置的方法使这类电源根据负荷需求调整发电量,则需要配备较大容量的储能装置,这会降低系统的经济性,因此这类可再生能源的目标是保持最大的利用率,分布式电源能输出多少功率就输出多少功率,微网设计时一般会满足此类电源“即插即用”的特点。这就加剧了微网中潮流流动的不确定性,设计保护方法时应尽可能做到不受潮流的影响。

微网线路保护通信

在同等电压等级配电网中一般较少采用基于通信的保护。微网中,故障的判断较为复杂,有时需要利用多点的信息;为了维持微网的稳定,也需要确保故障能够及时地切除。基于通信的保护可以很好地完成这些功能。

微网线路不会太长,为几百米左右,方便信息信道的铺设。如将微网作为具有孤岛运行功能的智能配电网一部分的角度来考虑,应装设MMS(智能微网管理系统)。MMS为确保微网最经济有效地运行需同微网的各个部分保持联系,在合理设置MMS功能的情况下,可考虑将保护装置同其相结合或者直接利用其通信信道减少系统的投资 。

微网线路保护保护在不同运行方式下的适应性

微网既可以并网运行又可以独立运行的特点给保护的设计带来了新的挑战,孤岛运行条件下,短路电流由DG提供,基于逆变器的DG无法提供足够大的短路电流。并网条件下,短路电流可通过迭加定理来分析,电网能提供很大的短路电流,逆变器DG提供的短路电流只占短路电流很小的一部分。在这两种运行方式下短路电流差别很大,在一种运行方式下可行的保护方法在另一种运行方式下可能变得不再可行。

对于短路电流的这些特点一般有两种应对方法:一是设置限制条件使保护可以针对不同的运行方式;二是设计可以适用于两种运行方式的保护策略。其中前者可通过不同运行方式下故障电流的计算来整定,相对较容易实现,但是因限制条件的加入使得保护变得复杂。后者可以通过一套保护作用于不同的运行方式,但是对保护适应性的要求比较高。

微网线路保护故障切除时间

微网中的分布式电源多采用电力电子接口,这使得微网具有缺少惯性、响应速度快等特点。若采用配电网相同电压等级下的故障切除时间,容易使微网系统失去稳定。

故障切除时间还应该考虑到负荷的敏感程度,保证故障切除后系统还能保持稳定。例如,电动机负荷所占的比例越大,临界故障切除时间越短;三相短路故障点离感应电动机负荷点越近,临界故障清除时间越短。

微网线路保护DG不同控制方式与保护的对应

DG的控制是微网控制的基础,关于DG的控制方法的研究比较多,常见的有恒压恒频控制、PQ控制、P-f, Q-V下垂控制、f-P , VQ下垂控制等。不同方法的控制模块输入量及其所控制DG的输出量不同,当控制方式中没有加入任何针对故障的模块时,故障情况下,控制方式也会使所控制DG的输出量向参考值靠近,从而引起可以用以保护的电气量例如电压、电流等发生失常变化。

在对分布式电源控制方法进行设计时,应该考虑到故障情况并采取必要措施,例如数值限幅,跳闸时间配合等;同时保护方式也应该充分地考虑到DG控制方式的影响,设计与对应控制方式相协调的保护或是可适用于任何控制方式的保护 。

查看详情

微流控“动力源”— 微泵研究发展简介

微泵作为微流体系统的“心脏”,是微流体输送的动力源,也是微流体系统发展水平的重要标志。作为一种重要的微型执行部件,微泵还可广泛应用于药物输送、血液运输、DNA合成、电子冷却系统、微全分析系统、微型燃料电池、微型卫星推进系统等领域,具有巨大的市场应用前景。

微泵的发展现状

无阀微泵快速发展

微泵根据其有无可动阀片分为有阀微泵和无阀微泵。典型的无阀微泵有收缩-扩张型微泵,以及基于流体性质的非机械式微泵。有阀微泵的优点是原理简单,制造工艺成熟,易于控制,反向截止性能较好。

但缺点也很明显:由于阀片的存在,微泵加工工艺要求高,结构复杂,不利于集成以及微型化;阀片易疲劳,并且回流现象不可避免,微泵效率低;在药物输送、血液运输等领域应用中,阀门的存在会造成堵塞,且容易损伤细胞。

相比于有阀微泵,无阀微泵有以下优点:结构简单,易于加工和制备,可以制成平面结构,或者直接和微流控芯片一体化加工,便于微泵的微型化、集成化;无阀微泵利用微流体的特性,可以连续输送流体,能精确检测和控制流量,在生物医学方面应用广泛。

因此,无阀微泵成为21世纪微流体系统微型化、集成化、控制精准化程度进一步提高的突破口,具有广阔的应用前景。

聚合物材料成为主流

微泵材料的选择对微泵的设计制作、性能、成本以及应用都有显著的影响。良好的微泵材料应该具有与操作环境良好兼容、制作工艺简单、可大批量生产、疲劳寿命高等特点。

根据当今发表的微泵文献,多数以硅半导体、玻璃为材料。随着微泵技术的发展,聚合物材料如聚二甲基硅氧烷(PDMS)、光刻胶、电致动聚合物材料( EAP)、离子导电聚合胶片( ICPF)、聚对二甲苯(Parylene) 、聚甲基丙烯酸甲酯( PMMA)等也广泛用来制作微泵,其中PDMS最为常见,电致动聚合物如离子聚合物金属复合材料(IPMC)、介电弹性体(DE)、聚偏二氟乙烯( PVDF)等作为新型智能材料以其独特的优点成为国内外研究的热点。

以硅为材料的微泵工艺成熟,但加工制作复杂,成本较高,生物相容性差,在生物医学领域的应用受到限制。而基于聚合物材料的微泵有种类多、可供选择余地大、制作工艺简单、易于集成、生物兼容性好、性能优良、成本低等优点,非常适合大批量生产,使一次性使用的医学微泵成为可能。

微泵结构不断优化

首先是微泵腔体结构的优化。微泵腔体结构会影响微泵的压力、流量、流动损失系数以及流动稳定性。多数微泵均为单腔体结构,为了提高微泵的性能,研制多腔体结构微泵已成为一种趋势,目前主要集中在两腔体的研究上。

多腔体微泵可减轻流体脉动性,提高输送能力,并且压力和流量稳定,提高微泵效率。有实验研究发现,两腔串联结构,其输出压力和流量分别是单腔的2倍和1.4倍,而且综合性能较高;并联结构输出压力不变,但流量增加一倍,而且脉动小。

微流道是无阀微泵的关键结构,其结构制约着微泵性能,有必要对微流道结构进行优化。有关学者提出了利用锯齿形微流道代替传统扩张/收缩微流道,有效提高了微泵性能。锯齿型微流道由于侧面齿形角的存在,流动过程更易产生漩涡,使流道压力损失降低,其最大流量和最大压头都得到提高。

Li等模仿鱼的鳍片,在微流道侧壁增加微翅片结构,微泵流动效率提高了10% ,在100 V,3 kHz的驱动电压下测试,微泵性能提高了35% 。浙江大学傅新等利用Micro-DPIV技术对无阀微泵进行流场检测,探究了微泵的流动机理,为微泵性能检测、流道结构优化设计提供了实验验证和技术指导。

国内外微泵的研究进展

按泵类有无运动部件分,可以分为机械式微泵和非机械式微泵。机械式微泵驱动力较大、响应速度快,是目前应用的主流,但因为有可动部件,结构复杂,存在机械磨损和泄漏现象,不利于微型化、集成化发展。非机械式微泵将非机械能转变为微流体的动能,没有运动部件,结构简单、流量连续稳定,是目前研究的热点。

机械式微泵

1)压电驱动微泵

压电驱动微泵是基于压电晶体的压电特性驱动薄膜振动从而实现泵送流体的。常见的压电材料有压电片、PZT压电堆、压电薄膜。压电驱动的优点是结构简单、驱动力大、响应时间短、能耗低、效率高;其缺点是驱动电压高、振幅小,自吸困难,限制了其应用范围。

为解决微泵自吸困难、难以实现流速精确控制等问题,耿照新等研制了具有三明治结构的气液两用压电驱动微泵。国立台湾大学H.K.Ma等研制了一种有阀压电驱动微泵如图所示,该泵的泵体通过高精度的数控机床加工而成,两个阀门和泵膜均由PDMS薄膜制成,横截面尺寸为28 mm×5 mm。

在50 V、100 Hz正弦交流电驱动电压下,最大流量达到 72 mL /min,实验证明这种微泵在笔记本电脑CPU冷却系统中有良好的冷却效果。微泵的性能主要受到单向阀、泵膜、压电元件、泵室容积、驱动电压和频率的影响。

2) 静电驱动微泵

静电驱动是基于库伦力的原理,在其中一个固定电极上加单一极性电压,在另一个与泵膜相连的可动电极上加交变电压,交替产生双向形变,从而实现泵送功能。

静电微泵具有低功耗、响应快、驱动频率高等优点; 但不足的是驱动电压高,体积冲程小,而且还需在微泵加入防止电路短路的绝缘膜,加工工艺要求高。Machauf A等研制了在流体中加载电场的静电微泵。

它利用了流体的高介电常数和低导电性,流体的介电常数越高,相同驱动电压和尺寸下微泵的静电力越大,因此即使两电极之间的距离相对较大,通过提高流体介电常数也可以获得足够的驱动力,但这种微泵的缺点是只能用于导电流体。

当电极之间距离为63 μm,驱动电压为50 V时,最大流量为1 μL/min。Astle等研制了一种应用于气相色谱仪化学分析的多级静电气动微泵,在100 V、14 kHz的驱动电压下,最大流量为3 mL/min,最大背压为7 kPa,满足了气相色谱仪对流量和压力的要求。

国内对于静电微泵的研究主要集中在理论分析和数值模拟上。例如,应济等建模分析了静电泵膜吸合与释放现象,其分析结果为确定静电微泵驱动电压的上限值从而避免吸合提供了依据。

陈荣等建立了双腔静电振膜式微泵的理论分析模型,计算并讨论了驱动电压、振膜厚度、介电层厚度对微泵性能的影响,计算结果表明双腔结构微泵相比单腔结构微泵性能上有明显提高。这些理论分析都为静电微泵的设计和制造提供了依据。

3) 热气驱动微泵

热气驱动基本原理是利用加热产生的气体膨胀力为驱动力。热气驱动微泵的驱动器一般由加热器、泵膜和密闭压力室组成。通过加热冷却压力室的气体产生膨胀和收缩动作,推动泵膜运动。

热气驱动微泵提供的驱动力较大,可在较低的驱动电压下获得较大的膜片变形,并且热驱动器容易集成在泵体中,微泵整体体积较小; 但是由于冷却较慢,微泵响应慢,驱动频率低,一般为几赫兹,而且功耗较大。

Ok Chan Jeong等研制了一种蠕动式结构的热气驱动PDMS微泵,可以应用于血液输送系统。该泵具有三个致动器,两个泵腔,在0.3 Hz的输入频率下最大流量可达到0.48 μL/s,此时的背压为 7 cmH2O。

Seung等研制了一种应用于生物芯片的PDMS热驱动微泵,如图所示,该泵由三层PDMS片和一层加热电阻玻璃片组成,利用PDMS模塑法加工出泵腔、微阀、流体通道等微结构。

加热电阻与微泵泵体采用分离式封装方法,加热电阻可重复使用,降低了微泵的成本。经过试验,在0.1 Hz,占空比为0.33的驱动电压下,该微泵的驱动性能达到最佳,最大流量达到50 μL/min。

4) 电磁驱动微泵

电磁驱动微泵的原理是将永磁铁贴在泵膜上,利用线圈产生的交变磁场,使得永磁体带动泵膜往复运动,达到泵送流体的目的。电磁驱动的优点是输入电压低、泵膜变形大、频率调节方便、响应快,并且可以远程控制。缺点是能耗高、电磁材料微加工困难、由于线圈存在难以微型化。

Yamahata等研制了一种球阀型PDMS电磁驱动微泵。该泵用喷砂技术加工出玻璃基板,利用熔融烧结技术集成多层微流控芯片。将永磁铁嵌入PDMS薄膜制作泵膜,可产生较大的体积冲程,提高了微泵抗气泡和自吸能力。当驱动电流为 100 mA,驱动频率为30 Hz时,得到最大输出流量为5 mL/min,最大背压为28 kPa。

Chao ZHI等研制了的一种无阀电磁驱动微泵结构,微泵尺寸为20 mm×20 mm。通过旋涂方法制作了PDMS薄膜,将多层NdFeB/Ta永磁铁薄膜(TFPM)与PDMS泵膜粘结在一起,利用激光加工技术加工出了泵腔、微流道等微结构。经测试,方波信号相比正弦信号可获得更高的流量,在7.5 V、15 Hz的方波电压驱动下,最大流量达到130 μL/min。

5) 形状记忆合金驱动微泵

形状记忆合金驱动(SMA)是利用合金随温度变化发生相变的特性,来提供驱动力。它的形状记忆功能通过马氏体相变的可逆性来体现。常见的记忆合金有钛镍合金、金铜合金、铟钛合金、铜锌合金等,其中钛镍合金最常见。

这种微泵的优点是驱动力大,泵膜变形大,缺点是泵膜的变形较难控制、响应慢、驱动频率低(一般在100 Hz以下)、效率低。Xu等研制了形状记忆合金薄膜驱动微泵。该微泵以硅为材料,采用硅微加工工艺、金-硅共晶键合等技术制成。

通过对NiTi条施加一定频率的交变电流,泵膜在NiTi条的相变应力下产生往复振动,而实现流体泵送。当驱动频率为50~60 Hz时,可以获得340 μL/min的最大流量。

Shuxiang Guo等研制了一种利用记忆合金驱动的蠕动式微泵,总体尺寸为45 mm×30 mm×30 mm。微泵设计采用蠕动式结构,将三组记忆合金驱动器协调控制,驱动流体流动。实验表明,通过改变驱动电压的大小和频率,可以获得400~3200 μL/min范围内的流量。

6) 电致动聚合物驱动微泵

在外部驱动电压的作用下,能产生一定形状和尺寸变形的聚合物被称为电致动聚合物(EAP)。EAP是一种新型智能材料,目前应用于微泵的电致动聚合物主要有介电弹性体(DE)、离子聚合物金属复合材料(IPMC)和导电型聚合物聚吡咯(Polypyrrole)。电致动聚合物在电场的作用下可产生大幅变形,远大于现有的压电材料,可以大幅提高泵送能力。

西安交通大学提出了由介电弹性体驱动的无阀微泵并进行结构优化,在3100 V、5 Hz的驱动电压下可获得最大500 μL/min的流量。但这种微泵的驱动电压很高,DE材料的性能也不够稳定,还需要进一步的研究。Kean C.Aw等设计制作了一种IPMC驱动无阀微泵。IPMC的性能会随时间变化,因此采用在线迭代反馈技术(IFT)控制IPMC的弯曲变形,以获得恒定的流量。

在2.5 V、0.1Hz 的驱动电压下,可获得最大流量为130 μL/min。Yoshitaka Naka等研制了一种基于导电型聚合物聚吡咯(Polypyrrole)驱动微泵,如图所示。该泵具有两个导电聚合物致动器,通过对两个致动器施加相位差为180°的驱动电压,控制致动器产生开合运动,实现流体连续输送。这种微泵可以实现2~84 μL/min范围内的流量输送。该泵的优点是驱动电压低、能耗低、无回流现象,而且可以输送400倍于水的高黏度流体。

离子导电聚合胶片( ICPF)是一种在较低电压下就可以产生较大变形的聚合物材料,Wei.W等研制了一种ICPF驱动PDMS微泵。该泵的特点是ICPF致动器被密封的腔体包裹,PDMS泵膜在ICPF致动器变形力和该过程产生的热驱动力的共同作用下往复运动,从而实现泵送功能。该泵在5 V,2 Hz的驱动电压下,占空比为0.4时达到最大流量202 μL/min。

非机械式微泵

1) 电液动力微泵

电液动力(EHD)微泵基本原理是利用流体中带电离子在电场作用下的迁移,从而带动整个流体迁移流动的目的。这种微泵的优点是无阀无活动部件、结构简单、对微加工工艺要求不高、成本低;但这种微泵对流体的介电性质有特殊要求,只能用于绝缘液体或导电率极低的液体,如乙醇、丙酮、异丙醇等,限制了其应用。

按驱动电压类型可分为两种,一种是平行电极间施加直流电压的EHD泵,另一种是在电极阵列上施加不同相位行波电压的EHD泵。Chen等利用聚合物材料聚对二甲苯(Parylene)为基底研制了一种低功耗的电液动力微泵,该泵采用锯齿状电极,电极之间距离为20 μm,微泵尺寸为5 mm×7 mm×80 μm。

以异丙醇为介质,经测试,该微泵在30 V驱动电压下,微泵背压为490 Pa; 在20 V驱动电压下,微泵流速达到190 mm/min。该泵的优点是机械强度高、与IC工艺兼容性好,而且有良好的生物相容性。缺点是输送高介电常数和低粘度流体才能获得较大的流量。

Daisuke Wakui等提出了网格型碳作为电极制作的电液动力微泵。三维网格碳电极由SU-8胶在高温下分解制成,采用芯片封装技术和低温SU-8键合工艺将电极集成在微流控芯片上。以电子氟化液为流体,在 500 V的驱动电压下,最大压力和最大流量分别达到23 Pa和400 nL/min。

2) 电渗驱动微泵

电渗驱动(EO)微泵是指外加电场使微通道壁面带有固定电荷,利用其产生的电渗现象驱动液体。按驱动方式分主要有直流电渗泵和交流电渗泵两种。直流电渗泵需要超高电压,一般要几千伏; 而交流电渗泵驱动电压低,可以有效抑制电解反应。

这种微泵的优点是结构简单、流动稳定、易于控制、背压高; 缺点是驱动电压高、流量小、外界影响因素多,而且仅适用于电解质溶液。Chen等设计了一种平面电渗驱动微泵,该泵采用显微光刻和湿法腐蚀工艺在玻璃基板上加工而成,使用电导率为4×10-4 S/m的去离子水为介质,当施加电压为1 kV 时,微泵最大流量为15 μL/min,最大背压为33 kPa。

M.Mehdipour等提出了一种行波驱动交流电渗微泵,该微泵利用表面微细加工技术制作而成,通过在电极上沉积硅氮化物绝缘层,防止在电极边缘产生高电场,造成电解液电解。以乙醇为介质,当施加2 V、10 kHz的交流电时,微泵最大流速为2.39 mm/s。

3) 磁流体动力微泵

磁流体动力微泵(MHD)是利用磁场和电场施加于导电流体的洛伦磁力作为微泵的驱动力,一般驱动电导率在1 S/cm数量级的导电液体。驱动电压可以采用直流电和交流电两种方式。MHD微泵结构简单,成本低,驱动电压低,流动稳定且可双向控制;但只适用于导电率较高的流体。

Homsy等制作了一种应用于核磁共振微流控芯片的磁流体动力微泵。当磁场强度为7 T时,19 V的直流电压可以获得1.5 μL/min的最大流量,功率只有38 mW。一般的直流电压MHD微泵由于高电流密度造成电解液电解,产生气泡而限制了流量,为此Nguyen等研制了一种大流量直流电压磁流体动力微泵。

该泵通过加工条状电极通道阻止气泡聚集,减弱了气泡对流量的影响。当驱动电压为5 V,电流密度5000 A/m2时,可以得到最大流量为325 μL/min。

4) 电浸润式微泵

电浸润式微泵利用表面张力来驱动流体运动。微尺度下,表面张力是一种主要作用力,而金属液体的表面张力会因电压改变而变化,在充满电解液的管道中施加电压金属液滴就可以沿着管道运动,推动流体运动。

这类微泵具有功耗低、响应快、表面电化学不活泼等优点。Yun等研制了一种连续电浸润式微泵,微泵由三层粘结在一起的晶片组成,用SU-8胶形成封闭空间将电解质溶液和水银滴封闭在一起,利用水银滴往复运动产生压力差驱动硅胶膜运动。当驱动电压为2.3V,驱动频率为25Hz时,可以获得最大流量为70 μL/min,最大压力为800 Pa,而消耗功率仅为170 μW。

总结与展望

随着MEMS技术的迅猛发展,微泵技术取得了长足进步。虽然微泵有着广泛的应用前景,但由于其商业化程度还不高,微泵的发展存在以下挑战:

1)微加工技术直接影响微泵的性能,目前出现的激光加工技术、微注塑成型技术等将促进微泵的进一步发展; 2)微泵和微流体系统一体化加工将逐渐成为一种趋势; 3)微泵部件如管道、阀片、腔体结构以及材料决定了微泵的性能,对微泵结构进行参数优化至关重要; 4)微尺度效应下需要建立微泵的有效理论模型,或采用新的流场检测技术探究微泵内部流动机理,提高微泵综合性能。

本文转自:国家纳米科学中心

声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。

公众号、报刊等转载请联系授权

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639