选择特殊符号
选择搜索类型
请输入搜索
动力压井所需排量的计算原则是:在该排量下,井内的流动循环摩阻加液柱压力略大于地层压力。初始压井液一般采用低密度液体,加大排量,以弥补密度降低所减小的液柱压力,海上压井时为了便利可直接采用海水。目前,单相流体条件下的排量计算公式已经非常完善,而对多相流动条件下排量计算公式的研究还不够深入。笔者利用多相流计算公式对动力压井排量进行计算,计算用到的基本公式如下:
式中,
pwf——为井底压力,MPa;
ρh——为流体混合密度,kg/m3;
vh——为混合流体流速,m/s;
f——为摩擦系数,无因次;
L——为流体流程,m;
R——为水力半径,m;
q1,qg,qc——分别为井筒内液相、气相及固相流量,m3/s;
d——为过流断面直径,m;
ρ1,ρ2,ρ3——分别为液相、气相及固相密度,kg/m3。
将上述三个公式联立,代入井筒多相流动方程,便可求得需要的动力压井排量。
针对深水海底高压浅层气所处位置“浅”的特点,可以采取以下步骤进行动力压井操作:
1)结合现场数据,计算动力压井参数,包括压井液密度、排量、泵功率等;若地层破裂压力低,可直接采用海水做压井液;
2)通过钻杆将压井液以计算好的排量或以井底压力不致超过地层破裂压力的排量泵入井内;
3)压井过程中,应根据模拟计算的结果,动态调节压井液排量,以保持井壁稳定;
4)浅层气完全排出井筒、成功压井后,注水泥塞封住高压浅层气地层;
5)重新钻至浅气层顶部,停钻、固井,安装防喷器;
6)选用密度合适的钻井液,钻穿浅层气,继续钻井作业。
如果平台着火,首要的问题是人员安全,要有秩序地安全撤离。然后组织灭火并通过打救援井处理事故。救援井钻成之后,可用酸化和压裂法使两井沟通。沟通后就可按上述步骤实施压井。
动力压井法是Mobil公司首先提出的一种新方法,其最早只应用于陆上压井作业。该方法作为一种非常规压井方法,其基本原理是:以一定的流量泵入低密度压井液,使井底的流动压力等于或大于地层孔隙压力,从而阻止地层流体进一步侵入井内,达到“动压稳”状态;然后逐步替人加重压井液,以实现完全压井的目的,达到“静压稳”状态。它并不是通过使用高密度钻井液来达到压井的目的,而是通过增加排量,使流体循环时的摩阻增大,借助环空摩阻和静液压力来平衡地层压力。动力压井法的环空流动压降均匀分布在整个井身长度上,而常规压井的回压作用在整个井身的每一点上,也就是说动力压井法将产生较小的井壁压力。这个特点可以很好地解决浅层气压力高、地层破裂压力低等难题。在实际的海上作业时,可以直接采用海水做压井液,通过增大单位时间内海水的注入量来实现压井目的。
舒干井应当是“疏干井”。
观测井,就是用于水位观测,当然还可以用来降水
2.0T发动机相当于自然吸气发动机2.5-2.7排量汽车的动力不完全是由排量决定的,还要有调校方式和增压方式的区别。同样都是2.0L的排量,都是自然吸气,如果普通增压的方式,就是平常所说的2.0L,如...
深水海底常常潜伏着大量的高压浅层气层,钻遇浅气层时,往往不仅没有技术套管,而且没有下表层套管,所以无法安装防喷器系统,而在这种情况下是十分危险的。同时,由于海水的存在,海底岩层的压实程度小于陆上(即海上地层破裂压力梯度小于陆上),海水深度越大,二者的差别越大。因此,与陆上相比,深水地层更容易被压裂。此时,利用高密度钻井液及常规的借助井口装置产生回压来平衡地层压力的压井方法就不再适用。动力压井困〕作为一种非常规压井方法,并不是借助井口装置产生回压来平衡地层压力,而是借助流体循环时克服环空流动阻力所需的井底压力来达到与地层压力的平衡,这为有效解决深水地层低破裂压力梯度及高压浅层气问题提供了可能。
由于此处考虑多相流动情况,所以并不能像单相流动情况下那样直接给出密度计算公式。由于海底地层破裂压力低,此处只根据地层破裂压力pf和浅层气压力pr计算两个压井液密度极值
深水井喷顶部压井成功最小泵排量计算方法
墨西哥湾MC252井发生井喷后,BP公司采用顶部压井法进行压井,但最终失败,目前未见相关文献对失败原因进行分析。顶部压井法是一种非常规压井方法,缺乏现场实践经验及理论指导。压井成功的关键就是从井口泵入的重钻井液无法被井筒中的油气两相携带出井筒,从而使得重钻井液在井筒中聚集,逐渐建立平衡,从而压井成功。基于气液两相流理论,通过研究最小携带钻井液滴的理论,建立了压井成功时的最小泵排量计算模型,计算了不同的参数情况下的泵排量,为成功压井提供了理论依据,并利用模型计算分析了BP顶部压井法失败的原因。
深水动态压井钻井井筒压力模拟
动态压井钻井技术可有效解决深水表层钻井过程中出现的溢流或井漏、井塌等井下复杂事故。为研究深水表层动态压井钻井过程中的压力变化特征,结合动态压井钻井基本原理,建立了动态压井钻井井筒物理模型,通过设定海水和加重钻井液的初始排量、排量随时间的变化率,推导出了变排量、变密度模式下的动态压井钻井井筒压力数学模型。根据墨西哥湾深水钻井实例数据,计算分析了动态压井钻井过程中环空密度、环空压力、环空压耗以及井底压力随时间的变化关系。结果表明,动态压井钻井技术的关键在于通过实时调整海水排量、加重钻井液排量控制混浆密度,进而控制环空液柱压力,达到深水表层安全钻井的目的;机械钻速是影响井底压力的重要因素,机械钻速越大,由岩屑产生的附加密度越大,井底压力越大。
将增大了密度的泥浆注入井内,使井内泥浆液柱的压力稍大于油层压力。压井要做到“压而不死”,即要把井压住,不造成井喷,又不要将油层压死。因此,应注意选择适当密度的压井液。对高压井的压井,主要用循环压井的方法。其方法有正压法和反压法。
正压法是将压井液从钻杆泵入,再由钻杆和井壁之间的环形空间返出,如此不断循环,将井内稀释的泥浆排出,将井压住。
反压法是将压井液从钻杆之间的环形空间泵入,再由钻杆返出,不断循环,将井内稀释的泥浆排出,将井压住。当出现溢流或井喷时,向井内泵入高密度钻井液以恢复和重建井内压力平衡的作业。
压井的目的是把井下油层压住,使其在钻井射孔或作业时不发生井喷,保证试油和作业安全顺利地进行。同时又要保证施工后油层不因为压井而受到污染损害。压井时若压井液密度过大,或压井液大量漏入油层,少则影响油层的正常生产,延长排液时间,严重者会把油层堵死,致使油层不出油。如果压井液选择的密度过低不能把油层压住,在施工中会造成井喷。因此,施工中应当注意合理选择压井液的密度和压井方式,使压井工作真正做到“压而不死,活而不喷,不喷不漏,保护油层”。2100433B
将增大了密度的泥浆注入井内,使井内泥浆液柱的压力稍大于油层压力。压井要做到"压而不死",即要把井压住,不造成井喷,又不要将油层压死。因此,应注意选择适当密度的压井液。对高压井的压井,主要用循环压井的方法。其方法有正压法和反压法。正压法是将压井液(一般相对密度为1 2的泥浆)从油管泵入,再由油管和套管之间的环形空间返出,如此不断循环,将井内稀释的泥浆排出,将井压住。反压法是将压井液从油管和套管之间的环形空间泵入,再由油管返出,不断循环,将井内稀释的泥浆排出,将井压住。当出现溢流或井喷时,向井内泵入高密度钻井液以恢复和重建井内压力平衡的作业。压井的目的是把井下油层压住,使其在射孔或作业时不发生井喷,保证试油和作业安全顺利地进行。同时又要保证施工后油层不因为压井而受到污染损害。压井时若压井液密度过大,或压井液大量漏入油层,少则影响油层的正常生产,延长排液时间,严重者会把油层堵死,致使油层不出油。如果压井液选择的密度过低不能把油层压住,在施工中会造成井喷。因此,施工中应当注意合理选择压井液的密度和压井方式,使压井工作真正做到"压而不死,活而不喷,不喷不漏,保护油层"。