选择特殊符号
选择搜索类型
请输入搜索
①粉末冶金减摩材料。又称烧结减摩材料。通过在材料孔隙中浸润滑油或在材料成分中加减摩剂或固体润滑剂制得。材料表面间的摩擦系数小,在有限润滑油条件下,使用寿命长、可靠性高;在干摩擦条件下,依靠自身或表层含有的润滑剂,即具有自润滑效果。广泛用于制造轴承、支承衬套或作端面密封等。
②粉末冶金多孔材料。又称多孔烧结材料。由球状或不规则形状的金属或合金粉末经成型、烧结制成。材料内部孔道纵横交错、互相贯通,一般有30%~60%的体积孔隙度,孔径1~100微米。透过性能和导热、导电性能好,耐高温、低温,抗热震,抗介质腐蚀。用于制造过滤器、多孔电极、灭火装置、防冻装置等。
③粉末冶金结构材料。又称烧结结构材料。能承受拉伸、压缩、扭曲等载荷,并能在摩擦磨损条件下工作。由于材料内部有残余孔隙存在,其延展性和冲击值比化学成分相同的铸锻件低,从而使其应用范围受限。
④粉末冶金摩擦材料。又称烧结摩擦材料。由基体金属(铜、铁或其他合金)、润滑组元(铅、石墨、二硫化钼等)、摩擦组元(二氧化硅、石棉等)3部分组成。其摩擦系数高,能很快吸收动能,制动、传动速度快、磨损小;强度高,耐高温,导热性好;抗咬合性好,耐腐蚀,受油脂、潮湿影响小。主要用于制造离合器和制动器。
⑤粉末冶金工模具材料。包括 硬质合金 、粉末冶金高速钢等。后者组织均匀,晶粒细小,没有偏析,比熔铸高速钢韧性和耐磨性好,热处理变形小,使用寿命长。可用于制造切削刀具、模具和零件的坯件。
⑥粉末冶金电磁材料。包括电工材料和磁性材料。电工材料中,用作电能头材料的有金、银、铂等贵金属的粉末冶金材料和以银、铜为基体添加钨、镍、铁、碳化钨、石墨等制成的粉末冶金材料;用作电极的有钨铜、钨镍铜等粉末冶金材料;用作电刷的有金属-石墨粉末冶金材料;用作电热合金和热电偶的有钼、钽、钨等粉末冶金材料。
磁性材料分为软磁材料和硬磁材料。软磁材料有磁性粉末、磁粉芯、软磁铁氧体、矩磁铁氧体、压磁铁氧体、微波铁氧体、正铁氧体和粉末硅钢等;硬磁材料有硬磁铁氧体、稀土钴硬磁、 磁记录材料 、微粉硬磁、磁性塑料等。用于制造各种转换、传递、储存能量和信息的磁性器件。
⑦粉末冶金高温材料。包括粉末冶金高温合金、难熔金属和合金、 金属陶瓷 、弥散强化和纤维强化材料等。用于制造高温下使用的涡轮盘、喷嘴、叶片及其他耐高温零部件。
(英文:powder metallurgy dispersion-strenthened material)
金属或合金基体相与高度弥散的、基本上不溶于基体的金属或非金属相所组成的粉末冶金材料。其主要特征是高温强度高和抗蠕变性能好。强化机理与沉淀强化类似。但沉淀强化合金在高于沉淀相生成温度加热时,沉淀相会发生粗化和重溶,因此使用温度受到限制。
而弥散强化合金,弥散相可以稳定到基体固相线温度。弥散质点的存在改变了合金的屈服强度、加工硬化、蠕变和断裂行为。高温强度,特别是蠕变速率受弥散相几何参数(即基体中质点间的间距、质点的直径、形状(长宽比))的影响。
其机制既受位错绕过第二相的影响,也受晶界滑移的影响,还没有一个被普遍接受的蠕变模型。弥散相选择的一般原则是:生成自由能高,熔点高,与基体不互溶,相界能低(即界面结合良好)等。弥散相通常是氧化物,也可以是稳定的金属间化合物,甚至是纯金属。
用表面氧化法制造。SAP有很高的高温强度和抗蠕变性能,使用温度达500℃,远优于一般铝合金。它主要用于:反应堆中的核燃料包套,飞机机翼和机身,压气机叶轮,高温活塞等。
弥散质点一般为Al2O3,常用内氧化法制造。经弥散强化后,铜的强度、硬度得到很大的提高,导电性降低不多。它常用作电阻焊的电极,白炽灯灯丝引线,电子管零件和电子工业中的其他材料。
弥散强化材料的主要制造方法是粉末冶金法,其代表性方法分类如图。
最早的弥散强化镍基合金是ThO2(2%)强化镍(TD-Ni)。一般用共沉淀法制得。用湿法制得的还有用Th02强化的Ni-Mo、Ni-Co、Ni-Cr-Al等合金。机械合金化法出现之后,又发展了一系列镍基、铁基和钴基合金。已经使用的有10多种。弥散相一般为ThO2和Y203。表中列出了几个典型的合金。
MA754的性质优于ThO2-Ni-Cr,已成功地用作喷气发动机叶片。MA956E是以Fe-Cr-Al为基的材料,有优越的抗氧化性和抗腐蚀性。MA6000E合金,1000h的断裂应力在800OC以上远优于TD-Ni和IN792。
1100℃时,TD-Ni和IN792的1000h断裂应力只有20~30MPa,而MA6000E还有160MPa。因此MA6000E是一种好的叶片材料。
例如:弥散强化铅(DS-Pb),是惟一类似于SAP的例子,弥散相为PbO,主要用于声音衰减、化工器具、放射屏蔽和电池;含铝、锆的镁合金(铝和锆均溶于镁,但溶解后析出A1Zr4弥散相);金属间化合物FeAl3、FeNiAl9强化的Al-Fe合金等。
《粉末冶金》是冶炼超硬度、难以加工的硬质合金的方法。一般硬质合金切割刀头都用这种方法。是把超硬合金粉末放入成型模具再烧结成型。硬度高,韧性低,不容易加工!《铸铁》是含碳大于2.1%的铁碳合金,它是将铸...
粉末冶金检测设备有很多,常规的千分尺,百分表,投影仪和三坐标什么的是每家公司必备的,还有一些光学筛选机,这个是最近刚在这个行业兴起的新的检测设备,可以检测粉末冶金的尺寸和外观缺陷。
粉末冶金材料和制品的今后发展方向:1、有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展。2、制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金。3、用增强致密化过程来制造一般含...
飞机发动机上的刹车片、离合器摩擦片、松孔过滤器、多孔发汗材料、含油轴承、磁铁芯、电触点、高比重合金、硬质合金和超硬耐磨零件等因含有大量非金属成分或含有连通孔隙,都不能用普通铸、锻工艺制造,只能以粉末为原料经冷压、烧结等粉末冶金工艺来制造。
航空航天工业中使用的粉末冶金材料比较重要的有刹车片材料、松孔材料和高强度粉末合金三类。
刹车片是飞机机轮刹车装置的核心。现代飞机着陆速度达200公里/时以上,刹车载荷很大,刹车片表面瞬时温度可达800~1000°C,而且不允许发生粘结,以免刹车失效引起轮胎爆裂。以铁粉或铜粉为主要成分再添加摩擦和防止粘结的非金属粉末制成的粉末冶金刹车片(见图)可以满足这种要求。
绝大多数军用飞机和民用机都采用粉末冶金刹车片。因为每次刹车都会发生磨损,100~500次后就需要更换刹车片,所以它是飞机上用量最大的粉末冶金材料制件。粉末冶金材料
即多孔渗透性粉末冶金材料。涡轮发动机润滑系统和飞行器液压操纵系统中使用的青铜或不锈钢过滤器,是防止微粒堵塞和卡滞的重要部件。金属纤维松孔材料的强度和塑性较好,可用于高温部位,如涡轮喷气发动机叶尖密封环用的高温合金毡带和火箭发动机喷注器面板、燃烧室内壁和喉部用的发汗冷却松孔材料。
经粉末热成形的完全致密的高温合金、铝合金和钛合金。
一些现代飞机的发动机已使用了锻造的粉末高温合金涡轮盘和压气机盘。为节约原材料并省去锻造工序,还可以直接进行热等静压精密成形。用机械合金化方法制造的弥散强化高温合金和快速凝固粉末高温合金在1000~1050°C以上强度可以超过定向凝固合金,是制造导向叶片和涡轮叶片的好材料。粉末铝合金主要用作飞行器和发动机结构材料。
机械合金化铝合金和快速凝固粉末铝合金的强度可达 700兆帕(约70公斤力/毫米)。比强度达到钛合金和超高强度钢的水平,使用温度可达250~300°C,扩大了现有铝合金的应用范围。快速凝固的铝-锂合金与变形铝合金相比,比刚度高30%,比强度高一倍, 如取代铝合金可使飞行器重量减少30%以上。
粉末冶金材料在ZHB型喷油泵上的应用
本文讲述了在ZHB型喷油泵上应用粉末冶金材料时的材料选择情况,存在问题的处理方法和实现的效果。
粉末冶金材料在ZHB型喷油泵上的应用
本文讲述了在ZHB型喷油泵上应用粉末冶金材料时的材料选择情况,存在问题的处理方法和实现的效果.
《粉末冶金材料学》系作者在多年讲授“粉末冶金材料学”课程的基础上编著而成的,内容力图结合粉末冶金材料和材料科学基础相关知识,突出粉末冶金材料的基本概念和基本原理,系统阐述粉末冶金材料的体系、制备技术、科学基础、内在规律等,主要内容涉及粉末冶金材料的强韧化、铁基粉末冶金结构材料、硬质合金与工具材料、粉末冶金摩擦材料、粉末冶金减摩材料、粉末冶金多孔材料、粉末冶金先进陶瓷材料、粉末冶金高温含金、难熔金属材料、粉末冶金磁性材料和粉末冶金原子能工程材料等 。
前言
第1章概论
第2章粉末冶金材料的强韧化
第3章铁基粉末冶金结构材料
第4章硬质合金与工具材料
第5章粉末冶金摩擦材料
第6章粉末冶金减摩材料
第7章粉末冶金多孔材料
第8章粉末冶金先进陶瓷材料
第9章其他粉末冶金材料
思考题答案要点
粉末冶金材料由于其独特的化学组成和物理、力学性能,为新材料的开发利用提供了广阔的前景.曼景技术提供
MJ316高效防锈剂,为工序间产品表面提供了优秀的防锈性能,