选择特殊符号
选择搜索类型
请输入搜索
本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。
1公牛BULL(致力于为大众营造更安全的用电环境,国内高档开关插座/插座转换器领先供应商,以安全性高而著称,慈溪市公牛电器有限公司) 2PHILIPS飞利浦(始于1891年荷兰,享誉全球的跨国电子品...
电磁炉功率管的测量步骤: 1,使用数字表测试: GCE三个脚用数字万用表二极管档,任意两脚不相通就是蜂鸣器不叫,控制极G和漏极D正测有530多(二极管档...
1、监理要对放线记录进行审核, 2、根据放线记录与放线人进行由原始点至各放线前视点进行复核, 3、查看建筑闭合点误差是否在允许范围内, 4、在复核放线单据上签字。
实验六__微波功率测量和衰减测量
亚美微波 YAMEI MICROWAVE - 26 - 实验六 微波功率测量和衰减测量 一、实验目的和要求 熟悉微波功率测量的原理, 掌握利用微波功率计测量微波功率的方法。 熟悉 可变衰减器的工作原理,掌握可变衰减器的使用方法及其应用。 二、实验内容 利用可变衰减器衰减量的改变使微波功率计获得的功率发生变化, 掌握微波 功率测量的方法。了解信号源工作状态“等幅” 、“方波”时微波功率的变化。 三、实验原理 在微波范围内,功率和衰减是重要的基本量数据。 1. GX2C微波功率计 微波波段功率的测量方法不同于低频功率的测量方法。 低频功率的测量是通 过电压、电流和阻抗的测量来实现的。 微波功率测量一般是通过各种换能元件 (或 检测元件)把微波功率变换为易于直接测量的其它能量形式 (如热能、低频电能 等)再进行测量。微波功率计按灵敏度和测量范围可分为大功率计、 中功率计和 小功率计。按用途微
基于定向耦合器的高频功率测量
为实现发射机大功率的准确测量和有效保护,详细阐述了定向耦合器的原理、参数标定和功率测量方法,并以该方法测试已有的发射机输出功率。从测试结果分析得出,该方法具有安装简易、精度高、可动态标定的优点。通过在高频功率源与谐振加速腔之间安装定向同轴耦合器,经测量标定后,可实现在线测量出功率源的输出功率、驻波比,将测量结果反馈给控保和监测系统后,可完成在线大功率测量和设备的可靠控制与保护。
单位时间内所完成的功称为功率。功率测量是指对元器件或部件所消耗功率的测定。
通过功率测量可确定电路的工作效率,也可以确定信号发生器的功率、接收机的灵敏度以及放大器的增益等参数。
单位时间内所完成的功称为功率。功率单位"瓦"(W) 表示在 1秒内完成1焦耳功所需的功率。实用中又常用分贝瓦(dBW)表示以1瓦为参考电平来描述功率电平的对数式单位;分贝毫瓦(dBm)则表示以1毫瓦为参考电平。如1瓦可记为0分贝瓦或30分贝毫瓦,10微瓦可记为-50分贝瓦或-20分贝毫瓦。在直流或低频时,常常通过测量负载上的电压U、电流I 和它们之间的相位角φ来代替直接计算功率:P=UIcosφ
在射频频段,大多用电压来表征电磁能的量,但当频段上升到微波时,在非横磁波传输系统中电压失去唯一性定义而呈现非单值性,因而又以测量功率为主。现代应用传输横磁波的同轴线已使频段扩展到18吉赫甚至26.5吉赫以上,为在微波频段测量电压创造了条件,但这并不影响功率测量在实际应用中的地位。如发射机的发射功率、微波接收机的灵敏度、放大器的增益等均以功率电平表征,以功率测量定标。
功率计可依测量方式、工作原理、量程大小、被测信号形式和传输线类型等进行分类。根据功率计接入传输系统的方式可分为吸收(终端)式和通过式功率计。
吸收式功率计是作为被测系统的终端负载,吸收输出功率。
通过式功率计仅吸收被测系统中的部分采样功率。功率测量靠变换器把电磁能量变换成热、电、力、光等易于测量的能量。功率计依所用的变换器可分为热效应功率计(如量热式功率计、测热电阻功率计和热电式功率计等)、有质功率计、电子式功率计(二极管功率计和霍耳效应功率计)、铁氧体功率计和量子干涉效应功率计等。根据测量的功率量程可分为小功率计、中功率计和大功率计。一般功率量程小于10毫瓦者为小功率计、10毫瓦至10瓦者为中功率计,大于10瓦的为大功率计,但限量的划分尚无严格统一的规定。根据被测信号形式分为连续波功率计和脉冲功率计,根据传输线类型分为同轴功率计和波导功率计。
功率计按量程可分为大功率计(大于10W)、中功率计(10mW~10W)和小功率计(小于10mW)。
功率测量的基本方法可分为两类:一类是直接测量元、器件的端电压和通过的电流,通过计算得出待测功率,这一类功率计用于测量直流或低频功率;另一类是将电磁能量转换成易于测量的形式,例如热能、光能等,然后以间接方式测出功率。这一类功率计主要应用于射频和微波波段,例如,量热计式功率计、测热电阻或变热电阻功率计以及光度计式功率计等,都是基于能量转换的原理来实现功率测量的。
在直流或低频段可使用直接按瓦特(W)刻度的瓦特表。在射频和微波段常采用量热计法、测热电阻法、微量热计法和热电法、光度计法等。
将电磁能量转换成热能来测量。变换器是感应、吸收电磁 能量的负载,称为量热体。负载吸收功率,使之转换成热能,从而量热体温度上升,检测其温差热电势,根据功率和热电势间的关系来确定被测功率。
量热体有干负载、流体(水、油等)负载之分。实际测量中常采用替代技术来校准温度测量装置,用已知的直流(或低频)功率来替代被测射频或微波功率。量热式功率计的工作频段已达毫米波段,量程可分别做成大、中、小功率范围,单个仪器动态范围达30~40分贝,测量误差可达千分之几。量热式功率计的主要优点是准确度高、可靠性好、动态范围大、阻抗匹配好;缺点是结构和测试技术复杂,对环境温度和测试设备要求苛刻,而且测试时间长。因它能获得很高的测量准确度,世界各国都采用它作为国家功率标准。采用自动反馈电路可大大缩短测试时间,改善测量的精密度。
量热式功率计可分为替代静止式和替代流动式量热计,其主要技术指标为:频率范围:同轴系统一般到10吉赫(有的可达18吉赫),波导系统可达毫米波;量程:静止式为10毫瓦~1瓦(10瓦),流动式量热计常用来测量大功率,例如水负载量热计,量程可达2000瓦;误差:±3%~±10%;电压驻波比:1.5左右。静止量热计式功率计,是一种量热媒质静止不动的量热功率计,它由一个吸收电磁能量的隔热负载和测量负载温升的装置组成。隔热负载与周围环境保持完全隔热,当负载吸收高频功率时,温度随时间而上升,若测出负载在△t时间内的温升△T,便可求出在该时间内的平均功率。流动量热计式功率计,是一种量热媒质不断流动的量热功率计,由在液体中将电磁能量转变成热能的负载、使液体循环流动的系统以及测量循环液体温差的装置组成。流动的媒质由于吸收负载传递的热量,在液体出口处的温度将高于入口处的温度,测出温差△T,便可求出被测功率。流动量热计式功率计通常用于测量中功率与大功率;而静止量热计式功率计常用来测量小功率。测量精确度约为0.2~5%。
也称测辐射热器法,利用某些对温度敏感的电阻元件在吸收电磁能量后阻值变化的特性来测量功率。常用自动平衡电桥的直流或音频功率来替代测量射频或微波功率(图1)。所用的温度敏感的电阻元件称为测热电阻,主要有正温度系数的镇流电阻和负温度系数的热敏电阻。它适用于测量小功率,经功率标准校准后可作为传递标准。用阻抗法定度效率后来测定功率,准确度达±0.5%,有的国家用它作为国家标准。典型的测热电阻功率计的主要技术指标为:频率范围:同轴、波导系统为 2.6~40吉赫;量程:10微瓦~10毫瓦;误差:±(3~5)%;电压驻波比:1.5左右。
图中所示为测热电阻功率计原理,RT为热敏电阻, 它的阻值是温度的函数。具有正温度系数的称为测热电阻;具有负温度系数的称为热变电阻。未加高频信号时RT=R,电桥达到平衡,电流计G指示为零。加上高频信号时RT吸收功率,阻值改变,电桥失去平衡,电流计G偏转。G偏转的大小取决于吸收功率的大小,由此可以通过校准,从电流计G直接读出被测功率。当测量微波波段(分米波、厘米波段等)中、小功率时,常使用由铋--锑热电偶和电子电压表等组成的微波功率计。
测热电阻功率计是广泛使用的一种小功率计。它的优点是体积小,灵敏度高,响应时间快,使用方便;缺点是过载能力差,容易烧毁(主要是镇流电阻式功率计),易受环境温度影响,宽频带阻抗匹配困难。
用测热电阻元件作为量热体,用量热计法原理高准确度确定测热电阻座的有效功率,然后用测热电阻座配以高准确度的电桥来单独测量功率。这种方法的优点是准确度高,速度快和使用方便。许多国家都用它建立小功率国家标准,准确度达±(0.2~0.5)%。
借助于热电元件将电磁能量变为热能并测量由于发热所形成的 热电势,热电势与热电元件所耗散的射频与微波功率成正比。热电元件是耗散射频或微波能量的负载,又是将射频或微波能量转换成直流热电势的热电偶器件。新型的热电敏感器和热电薄膜功率计已获得广泛应用。这种功率计的优点是频带宽(50兆赫~26.5吉赫),动态范围宽(100微瓦~3瓦),低噪声零点漂移小,灵敏度高(可达0.1纳瓦),响应时间快和数字显示等。缺点是过载能力差,容易烧毁,长期稳定性尚待改善。
这些使用热效应法的功率计与已定度的衰减器或定向耦合器组合起来,可扩展功率量程,制成吸收式或通过式中、大功率计。
随着电子学和航天技术的迅速发展,脉冲调制的射频和微波系统得到广泛应用。这类系统的基本参量之一是脉冲峰值功率。脉冲峰值功率是指出现脉冲功率最大值的载波周期内的平均功率,而脉冲功率是指在一个脉冲持续时间内的平均功率。对于理想的矩形脉冲,峰值功率等于脉冲功率。测量脉冲峰值功率的方法主要有:①从测量出的平均功率计算脉冲峰值功率;②峰值检波法;③镇流电阻积分微分法;④取样比较法;⑤陷波法。脉冲峰值功率测量中准确度较高的是陷波法,主要技术指标为:频率范围:同轴系统0.95~2.35吉赫,和4.0~4.4吉赫,波导系统8.2~12.4吉赫;量程:10微瓦~10千瓦;准确度:同轴系统约±3%,波导系统约为±(4~6)%。此外还出现了带接口的可程控智能功率计,它可与其他仪器组成自动测试系统。
利用特殊白炽灯作为负载,吸收功率时此灯燃明,然后再通过光度计与50Hz市电电源加热后的发光亮度进行比较,从而测得被测功率。此种比较法测量功率称为光度计法。
光度计法可用于厘米波段,功率测量范围从十分之几到100瓦,测量精确度约±10%。
微波功率量值传递的关键是减小失配误差。功率的量值传递方法大致可分为四类。
①交替连接比较法
交替连接比较法:把标准功率计和被校功率计交替接到稳定的信号源上进行校准。这种方法的误差较大,但简单易行,在准确度要求不高的情况下广泛使用。
②单定向耦合器直接比较法
单定向耦合器直接比较法:利用定向耦合器-功率检波器组合,提供一个稳幅的低反射系数的等效信号源。当采用调配措施后,可使等效信号源的反射系数小于0.005,减小失配误差,然后用功率标准对其校准,确定校准系数后可作为传递标准,用来单独校准其他功率计。这种传递标准当信号频率为18吉赫时校准系数的准确度可达到 ±2%左右。这种方法广泛用于功率量值传递(微波功率国际比对就是这样进行的)。
③调配反射计法
调配反射计法:为了有效地消除失配误差、提高功率测量和量值传递的准确度,1960年开始采用反射计法进行功率量值传递,利用调配反射计技术,有效地将入射波与反射波分开以消除失配误差。但这种方法复杂,技术要求很高。
④ 功率方程法
功率方程法:1969年G.F.恩金提出一种描述和计算微波系统的"功率方程概念",用传输的净功率这一基本实数参量替代电路理论中的复数行波波幅来分析和计算微波系统,放宽了对均匀波导,特别是对精密同轴接头的要求,对失配误差的修正提出了一个确定解,克服了电路理论只能估计失配误差极限的缺点。功率方程法采用广义反射计技术的校准系统。它测量两个实数的失配因子,对失配误差进行精确修正,测量准确度可达到±0.2%。
单位时间内所完成的功称为功率。功率单位“瓦”(W) 表示在 1秒内完成1焦耳功所需的功率。实用中又常用分贝瓦(dBW)表示以1瓦为参考电平来描述功率电平的对数式单位;分贝毫瓦(dBm)则表示以1毫瓦为参考电平。如1瓦可记为0分贝瓦或30分贝毫瓦,10微瓦可记为-50分贝瓦或-20分贝毫瓦。在直流或低频时,常常通过测量负载上的电压U、电流I 和它们之间的相位角φ来代替直接计算功率:P=UIcosφ
在射频频段,大多用电压来表征电磁能的量,但当频段上升到微波时,在非横磁波传输系统中电压失去唯一性定义而呈现非单值性,因而又以测量功率为主。现代应用传输横磁波的同轴线已使频段扩展到18吉赫甚至26.5吉赫以上,为在微波频段测量电压创造了条件,但这并不影响功率测量在实际应用中的地位。如发射机的发射功率、微波接收机的灵敏度、放大器的增益等均以功率电平表征,以功率测量定标。
功率计可依测量方式、工作原理、量程大小、被测信号形式和传输线类型等进行分类。根据功率计接入传输系统的方式可分为吸收(终端)式和通过式功率计。
吸收式功率计是作为被测系统的终端负载,吸收输出功率。
通过式功率计仅吸收被测系统中的部分采样功率。功率测量靠变换器把电磁能量变换成热、电、力、光等易于测量的能量。功率计依所用的变换器可分为热效应功率计(如量热式功率计、测热电阻功率计和热电式功率计等)、有质功率计、电子式功率计(二极管功率计和霍耳效应功率计)、铁氧体功率计和量子干涉效应功率计等。根据测量的功率量程可分为小功率计、中功率计和大功率计。一般功率量程小于10毫瓦者为小功率计、10毫瓦至10瓦者为中功率计,大于10瓦的为大功率计,但限量的划分尚无严格统一的规定。根据被测信号形式分为连续波功率计和脉冲功率计,根据传输线类型分为同轴功率计和波导功率计。
功率计按量程可分为大功率计(大于10W)、中功率计(10mW~10W)和小功率计(小于10mW)。
功率测量的基本方法可分为两类:一类是直接测量元、器件的端电压和通过的电流,通过计算得出待测功率,这一类功率计用于测量直流或低频功率;另一类是将电磁能量转换成易于测量的形式,例如热能、光能等,然后以间接方式测出功率。这一类功率计主要应用于射频和微波波段,例如,量热计式功率计、测热电阻或变热电阻功率计以及光度计式功率计等,都是基于能量转换的原理来实现功率测量的。
在直流或低频段可使用直接按瓦特(W)刻度的瓦特表。在射频和微波段常采用量热计法、测热电阻法、微量热计法和热电法、光度计法等。
将电磁能量转换成热能来测量。变换器是感应、吸收电磁 能量的负载,称为量热体。负载吸收功率,使之转换成热能,从而量热体温度上升,检测其温差热电势,根据功率和热电势间的关系来确定被测功率。
量热体有干负载、流体(水、油等)负载之分。实际测量中常采用替代技术来校准温度测量装置,用已知的直流(或低频)功率来替代被测射频或微波功率。量热式功率计的工作频段已达毫米波段,量程可分别做成大、中、小功率范围,单个仪器动态范围达30~40分贝,测量误差可达千分之几。量热式功率计的主要优点是准确度高、可靠性好、动态范围大、阻抗匹配好;缺点是结构和测试技术复杂,对环境温度和测试设备要求苛刻,而且测试时间长。因它能获得很高的测量准确度,世界各国都采用它作为国家功率标准。采用自动反馈电路可大大缩短测试时间,改善测量的精密度。
量热式功率计可分为替代静止式和替代流动式量热计,其主要技术指标为:频率范围:同轴系统一般到10吉赫(有的可达18吉赫),波导系统可达毫米波;量程:静止式为10毫瓦~1瓦(10瓦),流动式量热计常用来测量大功率,例如水负载量热计,量程可达2000瓦;误差:±3%~±10%;电压驻波比:1.5左右。静止量热计式功率计,是一种量热媒质静止不动的量热功率计,它由一个吸收电磁能量的隔热负载和测量负载温升的装置组成。隔热负载与周围环境保持完全隔热,当负载吸收高频功率时,温度随时间而上升,若测出负载在△t时间内的温升△T,便可求出在该时间内的平均功率。流动量热计式功率计,是一种量热媒质不断流动的量热功率计,由在液体中将电磁能量转变成热能的负载、使液体循环流动的系统以及测量循环液体温差的装置组成。流动的媒质由于吸收负载传递的热量,在液体出口处的温度将高于入口处的温度,测出温差△T,便可求出被测功率。流动量热计式功率计通常用于测量中功率与大功率;而静止量热计式功率计常用来测量小功率。测量精确度约为0.2~5%。
也称测辐射热器法,利用某些对温度敏感的电阻元件在吸收电磁能量后阻值变化的特性来测量功率。常用自动平衡电桥的直流或音频功率来替代测量射频或微波功率(图1)。所用的温度敏感的电阻元件称为测热电阻,主要有正温度系数的镇流电阻和负温度系数的热敏电阻。它适用于测量小功率,经功率标准校准后可作为传递标准。用阻抗法定度效率后来测定功率,准确度达±0.5%,有的国家用它作为国家标准。典型的测热电阻功率计的主要技术指标为:频率范围:同轴、波导系统为 2.6~40吉赫;量程:10微瓦~10毫瓦;误差:±(3~5)%;电压驻波比:1.5左右。
图中所示为测热电阻功率计原理,RT为热敏电阻, 它的阻值是温度的函数。具有正温度系数的称为测热电阻;具有负温度系数的称为热变电阻。未加高频信号时RT=R,电桥达到平衡,电流计G指示为零。加上高频信号时RT吸收功率,阻值改变,电桥失去平衡,电流计G偏转。G偏转的大小取决于吸收功率的大小,由此可以通过校准,从电流计G直接读出被测功率。当测量微波波段(分米波、厘米波段等)中、小功率时,常使用由铋——锑热电偶和电子电压表等组成的微波功率计。
测热电阻功率计是广泛使用的一种小功率计。它的优点是体积小,灵敏度高,响应时间快,使用方便;缺点是过载能力差,容易烧毁(主要是镇流电阻式功率计),易受环境温度影响,宽频带阻抗匹配困难。
用测热电阻元件作为量热体,用量热计法原理高准确度确定测热电阻座的有效功率,然后用测热电阻座配以高准确度的电桥来单独测量功率。这种方法的优点是准确度高,速度快和使用方便。许多国家都用它建立小功率国家标准,准确度达±(0.2~0.5)%。
借助于热电元件将电磁能量变为热能并测量由于发热所形成的 热电势,热电势与热电元件所耗散的射频与微波功率成正比。热电元件是耗散射频或微波能量的负载,又是将射频或微波能量转换成直流热电势的热电偶器件。新型的热电敏感器和热电薄膜功率计已获得广泛应用。这种功率计的优点是频带宽(50兆赫~26.5吉赫),动态范围宽(100微瓦~3瓦),低噪声零点漂移小,灵敏度高(可达0.1纳瓦),响应时间快和数字显示等。缺点是过载能力差,容易烧毁,长期稳定性尚待改善。
这些使用热效应法的功率计与已定度的衰减器或定向耦合器组合起来,可扩展功率量程,制成吸收式或通过式中、大功率计。
随着电子学和航天技术的迅速发展,脉冲调制的射频和微波系统得到广泛应用。这类系统的基本参量之一是脉冲峰值功率。脉冲峰值功率是指出现脉冲功率最大值的载波周期内的平均功率,而脉冲功率是指在一个脉冲持续时间内的平均功率。对于理想的矩形脉冲,峰值功率等于脉冲功率。测量脉冲峰值功率的方法主要有:①从测量出的平均功率计算脉冲峰值功率;②峰值检波法;③镇流电阻积分微分法;④取样比较法;⑤陷波法。脉冲峰值功率测量中准确度较高的是陷波法,主要技术指标为:频率范围:同轴系统0.95~2.35吉赫,和4.0~4.4吉赫,波导系统8.2~12.4吉赫;量程:10微瓦~10千瓦;准确度:同轴系统约±3%,波导系统约为±(4~6)%。此外还出现了带接口的可程控智能功率计,它可与其他仪器组成自动测试系统。
利用特殊白炽灯作为负载,吸收功率时此灯燃明,然后再通过光度计与50Hz市电电源加热后的发光亮度进行比较,从而测得被测功率。此种比较法测量功率称为光度计法。
光度计法可用于厘米波段,功率测量范围从十分之几到100瓦,测量精确度约±10%。