选择特殊符号
选择搜索类型
请输入搜索
早在1946 年,Rolls2Royce 公司就与英国海军签订了生产舰用中冷回热燃气轮机RM60 的合同,并与次年开始研制,要求机器在整个功率范围内有低的耗油率(尤其是部分负荷) 。RM60 设计功率4400kW ,寿命1000h ,燃气初温827 ℃,增压比18 ,这在当初都是比较高的。1954 年在“灰鹅”号炮艇上进行航行试验。试验结果表明RM60 虽然达到了良好的部分负荷性能,却使发动机的购置成本大大提高,且体积庞大,换热器方面也存在问题,像燃气侧烟灰沉积使回热器效率下降,中冷器凝出的水滴对压气机叶片产生侵蚀等等。另一方面,由于简单循环燃气轮机在结构和布置的紧凑性方面有显著的优点,加之当时人们对巡航- 加速相结合方案的强烈兴趣, ICR 技术未能获得进一步的发展 。
从那以后,舰用燃气轮机均采用简单循环,第二代燃气轮机也发展起来,其工作参数(燃气初温,增压比) 及各项性能指标比第一代均有很大提高。然而,继续提高燃气轮机的工作参数遇到了更大的困难,且无论工作参数多高,其低负荷时燃耗率的恶化趋势也不会发生本质的变化,这是简单循环难以克服的缺点。因此,从八十年代开始,美国转向了对中冷回热循环燃气轮机的研究,此时,由于燃气轮机和热交换器方面的技术进展,使中冷回热循环在达到最高的循环效率、优良的变工况性能的同时仍能使装置结构紧凑,特别适于舰用。
1985 年10 月美国海军同时与美国GE 和英国Rolls2Royce 公司(联合Allison、Garrett 公司) 签订了两个研制中冷回热燃气轮机的合同。同时,德国的MTU 公司慕尼黑分部也在论证研制ICR 燃气轮机。1991 年12 月,美国海军将WR21 中冷回热燃气轮机机组的设计和发展合同授与Westinghouse Electric Coporation 船舶分部(以此分部为主体,后来组建了Northrop Grumman 船用系统公司,成为新的总承包商) ,分承包商主要有Rollse2Royce 公司工业与船用燃气轮机分部(负责燃气轮机) ,AlliedSignal 公司航空系统和设备集团(负责回热器和中间冷却器) 和CAE 电子公司(负责控制设备) 。1994 年1995 年,英国和法国分别加入该合同,分担一部分开发经费。2000 年2 月,WR21 的开发和前期试验完成,进行3000 小时耐久试验和其他一系列为实际服役准备的性能试验,2002 年底基本完成。2000 年11 月,英国海军定购六台WR21 机组,为其最新的Type45 型驱逐舰配套,作为其电力推进系统的原动力装置,这是WR21 的第一份订单。
WR21 的低油耗、出色的部分工况特性以及其模块化设计和高可靠性,引起了各国海军的极大关注,除了美、英、法三国,荷兰LCF“迪泽文”级导弹护卫舰已经装备了WR21 ,意大利、韩国、日本也在考虑引进。WR21 已经成为新一代舰用燃气轮机的代表。
中冷器的使用可以明显提高燃气轮机的比功率,同时对部分工况时的效率改善也有帮助。设计中冷器时要注意限制空气压降,研究表明,如果空气压降过大,压力损失以及由此带来的气体温度升高会极大的抵消中冷器的中冷效果。此外,还要考虑其结构和布置,应尽量和母型机配合,降低流通损失、减小尺寸。需要注意的是,如果只单独使用中冷器,发动机热效率将会降低,因为中冷器从循环中带走了热量,只有和回热器一起使用,才能在提高比功的同时又提高循环效率。
简单循环燃气轮机中燃烧产生的热能中有近70%随排气而损失,用回热器回收废气中热能使循环具有更好的热效率。燃气轮机回热器不像中冷器那样需要严格限定压降的范围,保持较高的回热效率是其主要设计目标。燃气轮机回热器属于气- 气热交换器,气体的换热系数比较小,为达到一定的换热效率,回热器的体积有可能变得很庞大。因此,回热器的选型是一个重要问题,管壳式回热器的尺寸大,旋转式回热器的密封性差,仅适于低压应用场合。一次表面式回热器的尺寸虽比板翅式回热器更小,但还是建议采用板翅式,主要是由于板翅式回热器的强度、耐久性更好和易于建造大尺寸的回热器。
将间冷循环和回热循环结合在一起就构成了间冷回热燃气轮机。间冷回热燃气轮机是在简单循环的基础上,在高、低压气机之间增加1个间冷器,在排气出口增加1个回热器。采用间冷器,降低了空气进入高压压气机时的温度,高压压气机的压缩耗功因此减少,整个机组的比功率得到提高;高压压气机的出口温度也相应降低,这样,回热器两侧空气和燃气的温度差增大,回热器效率也得到提高。
采用间冷回热燃气轮机不仅能够较大幅度提高燃气轮机在额定工况下的效率、功率等总体性能,而且使机组在大部分功率工况下的经济性得到显著改善。此外,采用紧凑而高效的回热器使燃气轮机具有较低的排气噪声和红外特征。
微型燃气轮机更先进,是21世纪能源技术的主流,能量利用比燃气轮机更优秀。燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。微型燃气...
你好燃气轮机与微型燃气轮机的区别除了功率上,最主要是压气机和涡轮不一样,大部分燃气轮机的压气机、涡轮都是轴流式,而现在的微型燃气轮机的压气机都是离心式,涡轮是向心式的。结构不一样从建模角度来讲本质...
你好燃气轮机与微型燃气轮机的区别除了功率上,最主要是压气机和涡轮不一样,大部分燃气轮机的压气机、涡轮都是轴流式,而现在的微型燃气轮机的压气机都是离心式,涡轮是向心式的。结构不一样从建模角度来讲本质上肯...
进口空气经低压压气机压缩后(压缩比约为总压缩比的30%) ,通过中冷器进入高压压气机。中冷器降低了空气进入高压压气机时的温度,高压压气机的压缩耗功因此减少,整个机组的比功率得到提高。同时,由于中冷器的使用,高压压气机的出口温度也相应降低,这样,增加了回热器两侧空气和燃气的温度差,回热器回热效率因此也得到提高。
从高压压气机出来的压缩空气先通过回热器,吸收动力涡轮排气中的热量,这样可相应的减少为达到某一涡轮前进口温度而需要在燃烧室加入的热量,降低燃油消耗率,这一效果在部分工况时特别显著。
间冷回热循环燃气轮机是在简单循环燃气轮机基础上增加了压缩空气中间冷却器、排气回热器等部件的燃气轮机,其突出优点是在设计工况及低工况下均具有较高的热效率,弥补了简单循环燃气轮机在低工况下热效率低的缺点,从而为军民用舰船采用全燃动力装置创造了条件。
燃气轮机论文
工程热力学论文 ——燃气轮机控制技术 院系:物理与机电工程学院 机电工程系 专业:机械类专业 小组: 第三小组 2014.5.20 燃气轮机控制技术 摘要 : 对燃机控制系统的发展进行了综述 , 对国内外各种常见的燃机方案 进行了说明和比较 , 着重对燃机数控系统的总体结构 , 电子控制器、液压机械执 行装置、控制软件的设计 , 系 统的数字仿真和半物理模拟试验等进行了较全面 的阐述 , 最后 , 对燃机数控技术的发展进行了展望。 关键词 : 燃气轮机 控制系统 航天推进系统 背景:与所有旋转动力机械一样 , 燃气轮机也走过了从液压机械式控制、 模 拟式电子控制到数字式电子控制的发展道路。 20世纪 70年代 , GE公司的 LM1500 燃气轮机配套使用由美国大陆公司研制的模拟式电子控制器实现了逻辑顺序控 制 , 而燃油控制仍然由液压机械
燃气轮机检修周期
350 第十九讲 概 述 19.1 燃气轮机应用的现状及发展前景 燃气轮机作为新型的动力设备,由于具有结构紧凑,单位功率重量轻,运行平稳且 安全可靠,可以大型化且热效率较高,可以快速起动和带负荷等显著的优点,受到世人 的广泛关注,应用的范围越来越广。在航天航空领域里是独一无二、不可替代的动力设 备;在航海和陆上交通运输领域里也占有越来越重要的地位,在一些现代化的舰船上, 均采用燃气轮机作动力设备。陆上交通运输工具,如汽车、火车机车及军用坦克上也采 用燃机作动力设备;在发电领域里,由于燃气轮机电厂占地面积少、建设周期短、水的 消耗量少、排气污染轻受到人们的广泛关注,尤其是以燃气轮机为主组成的燃气 —蒸汽 联合循环电厂不仅排气污染轻,而且其热效率已达到和超过了最新型的超超临界参数的 蒸汽轮发电机组,所以在发电行业里的应用也越来越多,已动摇了蒸汽轮发电机组在发 电行业的霸主地位。可以预期,在不
从图1可见,WR-21这种带中间冷却-加热(ICR-Intercooled Recuperated Cycle)的复杂循环燃气轮机比目前普遍采用的简单循环船用燃气轮机多了一个中间冷却器和一个回热器。研究表明:中、高压比的中间冷却-回热循环燃气轮机,具有提高压比、提高热效率、增加输出功率的特点。WR-21研制证明:WR-21的杰出性能得益于其三项独有的特点:
位于低压压气机和高压压气机之间的中间冷却器,对进入高压压气机的空气进行冷却,减少了高压压气机所需的功率,改进高压轴的效率并增加约25%的发动机输出功率。
回热器将排气余热予以回收利用,对进入燃烧室的燃气进行预热,明显地降低了燃油消耗率。实际运行表明:尺寸相同的高压透平进口处的燃气温度如果相同,采用回热器的WR-21燃气轮机的燃油消耗率明显小于常规的船用燃气轮机。
第一级高压透平采用可变几何导叶(VAN)叶轮,随着负荷的减少,通过透平的质量流量减少,可变几何导叶逐渐关小,保持了恒定的透平入口处燃气温度,从而提高了部分负荷工况时回热器的效率,其结果是在整个运行范围里提高了发动机的效率,特别是在低负荷时取得令人注目的效果。实船运行表明:WR-21的回热器加可变几何导叶的节油效果可达30~40%。
1997年,经全国科学技术名词审定委员会审定发布。
《铁道科学技术名词》第一版。 2100433B