选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

界面电磁学发展历程

界面电磁学发展历程

界面电磁学研究的发展与各类电磁表面或界面(自然的或人造的)的发展是分不开的。界面电磁学领域内最早的相关研究大多针对的是自然界中天然存在的各类材料和物质的表面或边界附近的电磁学性质及其应用,之后随着“超材料(Metamaterials)”、“人工(Artificial)电磁材料”、“超表面(Metasurfaces)”等概念的出现和在学术界的慢慢普及,界面电磁学的研究重心逐渐从探究和发现天然电磁表面或界面的电磁性质转向了探索人造电磁表面或界面的基本性质、理论及应用。按照时间顺序,大致可以将界面电磁学研究的发展历程粗分为三个阶段:均匀电磁表面或界面的研究、周期性电磁表面或界面的研究以及准周期性电磁表面或界面的研究。

均匀电磁表面或界面

均匀电磁表面或界面的研究主要是从人们发现不同介质材料的分界面处会发生可见光的反射与折射现象开始的。随着1600年斯涅尔定律(Snell's Law)的提出,人们开始意识到可见光在均匀介质材料的分界处的这种反射和折射现象是有着十分深刻的内在物理规律的,众多学者们对这类问题进行了研究,成功解释了许多的自然现象,并制造了许多例如望远镜、放大镜等巧妙利用了光的反射和折射的光学系统,应用在了人们的日常生活和实验室的研究工作中。而随着麦克斯韦方程组和经典电磁学理论的建立,以及电磁波和电磁波谱的概念的提出和被广泛接受,人们意识到可见光只是电磁波的一种,同时也意识到在光学领域中被广泛研究的反射与折射现象其实并不只是可见光特有的现象,其他类型的电磁波也可以产生类似的现象与类似的应用。这些早期的研究和理论体系的建立奠定了界面电磁学发展的基础。

周期性电磁表面或界面

随着固体物理及其相关研究的发展,人们渐渐对自然界的许多物质本身的构成有了更加深刻的认知,人们开始明白物质或材料的许多性质的存在其实是由于物质或材料的内在结构所导致的,人们意识到,如果能够通过某些人工的方法自由地改变物质的内部微观结构,那么也许就能够自由地操控物质或材料的某些宏观特性,这样一来就可能获得具有天然物质或材料不可能具有的性质的人造材料。这一思想很快被广泛传播,光学的研究者们想到,如果能够用经过精心设计的单元结构来模拟一般晶体的晶元,并将这些单元结构周期排列起来,就可以实现人造的光学晶体并通过设计单元结构来设计人造材料的光学特性,光子晶体的概念由此诞生。与此同时,周期性结构在人造材料设计中的巨大威力也被发掘出来,加之在微波频段的频率选择性表面(Frequency Selective Surface, FSS)、电磁带隙(Electromagnetic Band Gap, EBG)结构等方向的飞速发展,人造周期性电磁表面或界面开始被不断地研究和应用,人们开始使用人造周期性电磁表面或界面对各类电磁波的传播和辐射进行调控。1970年前后,人们开始实现用人造周期性电磁表面或界面对电磁波的幅度进行调控,2000年前后,人们开始实现用人造周期性电磁表面或界面对电磁波的相位进行调控。自此,人造周期性电磁表面或界面以及2维电磁学问题逐渐成为现代电磁学研究的热门课题。

准周期性电磁表面或界面

周期性电磁表面或界面的发展让人们逐渐习惯于通过精心设计电小尺寸的单元结构并将其周期排布起来从而实现具有特殊电磁性质的人造电磁表面或界面。而受到传统的阵列天线理论的启发,研究者们意识到,在将单元结构周期排布起来构成人工电磁表面或界面的时候,每个单元的结构也许并不需要完全相同,甚至,不同的单元结构有规律的周期排布起来反而可以实现一般周期性电磁表面或界面不可能实现的功能。然而,当构成人工电磁表面或界面的不同单元结构相去甚远的时候,单元的电磁特性与整个人工电磁表面或界面的整体电磁特性之间的联系就变得难以捉摸,非常不利于分析和设计。于是人们提出了准周期性电磁表面或界面的想法,通过将某种单元结构内的某些参数做出有规律的变化,从而形成一系列结构不同但类似的单元,精心设计这些单元的排布方式就可以令电磁表面或界面实现许多全新的功能,例如电磁波的聚焦、分束等。这些构成准周期性电磁表面或界面的单元虽然结构不同,但是由于它们都是由某一种单元结构生成,结构有许多相似性,在分析这些单元在准周期性电磁表面或界面中的局部特性时,往往还可以用周期性电磁表面或界面的分析手段和结论来近似分析,“准周期性”的命名由此而来。同时,由于构成电磁表面或界面的单元不需要完全相同,因此在整个电磁表面或界面的单元选择和排布上多出了许多自由度,这也使得准周期性电磁表面或界面常常具备周期性电磁表面或界面不可能具备的功能和特性。随着准周期性电磁表面或界面的出现和迅速发展,人造电磁表面或界面和2维电磁学问题在科学和技术中的潜力开始受到学术界和工业界空前的关注。同时,对这类问题的研究也促使研究者们开始慢慢打破许多传统学科,例如微波和光学等,之间的界限,因此,巨大的机遇和挑战让人们意识到,一套能够简洁、高效、实用地分析电磁表面或界面和2维电磁学问题的理论体系亟待建立。2016年,清华大学,电子工程系,微波与天线研究所,杨帆教授 及其课题组首次提出“界面电磁学(Surface Electromagnetics)”这一概念 ,将此类问题划分为界面电磁学问题。

查看详情

界面电磁学造价信息

  • 市场价
  • 信息价
  • 询价

界面

  • 20/50kg规格包装;1kg/5-8平方
  • 20kg桶
  • 金砼宝
  • 13%
  • 广州市砼宝科技有限公司
  • 2022-12-07
查看价格

界面

  • 15kg/18L
  • 王漆化工
  • 13%
  • 惠州市维尔康王漆化工有限公司
  • 2022-12-07
查看价格

高强界面修复砂浆

  • soface100%-GQ高强界面修复砂浆
  • kg
  • 东方雨虹
  • 13%
  • 深圳东方雨虹防水工程有限公司
  • 2022-12-07
查看价格

高强界面修复砂浆

  • soface100%-GQ高强界面修复砂浆
  • kg
  • 东方雨虹
  • 13%
  • 深圳东方雨虹防水工程有限公司
  • 2022-12-07
查看价格

SKD界面

  • SKD808
  • kg
  • 世康达
  • 13%
  • 四川世康达土木工程技术有限公司
  • 2022-12-07
查看价格

  • 机械用
  • kW·h
  • 阳江市2022年10月信息价
  • 建筑工程
查看价格

  • 机械用
  • kW·h
  • 阳江市2022年9月信息价
  • 建筑工程
查看价格

  • 机械用
  • kW.h
  • 阳江市阳西县2022年9月信息价
  • 建筑工程
查看价格

  • 机械用
  • kW.h
  • 阳江市海陵岛区2022年9月信息价
  • 建筑工程
查看价格

  • 机械用
  • kW·h
  • 潮州市饶平县2022年8月信息价
  • 建筑工程
查看价格

发展历程

  • 视频 发展历程
  • 48秒
  • 3
  • 中高档
  • 不含税费 | 含运费
  • 2020-07-06
查看价格

发展历程

  • 2cmPVC喷印雕刻造型 7000×3600mm;已发图片文件(文件名1#1楼展厅广告参数和图片)
  • 1m²
  • 1
  • 中档
  • 不含税费 | 含运费
  • 2021-12-23
查看价格

发展历程灯箱

  • 亚克力UV灯箱 1200×880mm;已发图片文件(文件名1#1楼展厅广告参数和图片)
  • 1个
  • 1
  • 中档
  • 不含税费 | 含运费
  • 2021-12-23
查看价格

发展历程灯箱

  • 亚克力UV灯箱 480×600mm;已发图片文件(文件名1#1楼展厅广告参数和图片)
  • 1个
  • 1
  • 中档
  • 不含税费 | 含运费
  • 2021-12-23
查看价格

发展历程灯箱

  • 亚克力UV灯箱 160×360mm;已发图片文件(文件名1#1楼展厅广告参数和图片)
  • 1个
  • 1
  • 中档
  • 不含税费 | 含运费
  • 2021-12-23
查看价格

界面电磁学概念

界面电磁学(Surface Electromagnetics)是现代电磁学领域在近年来开始高速发展的一个研究方向,它的主要研究对象为在物质(天然的或人造的)表面或分界面附近才会产生的独特而丰富的电磁学现象及其应用。正如物理学和化学领域的众多研究方向中存在着“表面物理学”和“表面化学”这样的重要分支一样,界面电磁学也可以被视为是现代电磁学领域的研究中的一个重要的分支。

如果从空间维度的角度对现代电磁学领域中的众多研究方向进行粗略的分类的话,大致可以将现代电磁学领域内研究的问题分为4类:0维问题、1维问题、2维问题和3维问题。其中,3维电磁学问题通常表示问题所研究的空间或物质在3维空间中的每一个维度上的尺寸都可以和所研究的电磁波波长可比拟,甚至远大于该电磁波波长。在这样的情形下,一般需要使用较为普适的电磁场和电磁波理论来对问题进行分析,这样的分析和求解过程通常是繁琐而复杂的,但从理论上讲,这样的分析方法可以有效解决绝大部分的电磁学问题。

当电磁学问题所涉及的空间或物质的尺寸在某一个或某几个空间维度上是远小于所关心的电磁波波长的时候,为了简化问题的理论分析和更加高效地进行实用的工程设计,就需要在完整电磁学理论的框架下提出各种在特定问题下具有独特优势但在其他问题中并不一定适用的简化的理论体系和分析手段。例如,当电磁学问题所涉及的空间或物质的尺寸在三个空间维度上均远小于所关心的电磁波波长的时候,就可以使用比普适的电磁场理论要简单得多的电路理论来对问题进行分析,这类问题可以被称为0维问题;当电磁学问题所涉及的空间或物质的尺寸仅在1个空间维度上与所关心的电磁波波长可比拟,在其余两个维度远小于波长的时候,可以使用传输线理论对问题进行有效地分析和求解,这类问题可以被称为1维问题。

而当电磁学问题所涉及的空间或物质的尺寸在两个空间维度上与所关心的电磁波波长可比拟,仅在1个维度上远小于波长的时候,就产生了2维电磁学问题。在过去许多年的电磁学研究中,2维电磁学问题的分析和求解通常是直接建立在普适的3维电磁场理论上的,但随着现代电磁学研究的不断发展以及现代电子科学与技术的不断进步,2维电磁学问题在自然科学与工程技术方面的重要性被不断发掘出来,专门针对2维电磁学问题的研究手段和理论体系亟需建立。界面电磁学正是在这一基础上诞生出来的研究方向,它旨在研究重要的2维电磁学问题,建立针对2维电磁学问题的研究手段和理论体系,并由此提出各类在自然科学和工程技术方面的新兴应用。

查看详情

界面电磁学数学物理基础

现代电磁学的基本理论均是建立在著名的麦克斯韦方程组上的,界面电磁学也不例外。作为描述一切宏观电磁学问题的基本方程,麦克斯韦方程组是一切宏观电磁学问题的研究起点,那么,在电磁学研究中必须要回答的一个很重要的问题就是,既然任何形式的电磁学问题都可以用同样形式的麦克斯韦方程组描述,为什么现实世界里的电磁学现象是多种多样的,而不是单一不变的?这个问题的答案是,对于不同的电磁学问题,虽然他们共用着同样的麦克斯韦方程组,但是它们对应的研究区域内的材料特性和边界条件是不一样,这些条件会影响麦克斯韦方程组的求解,因此,即使是同样的方程也可能得到完全不同的解。界面电磁学关注的是2维电磁学问题,而在经典的3维空间内,2维结构总可以被视为是一种边界,因此界面电磁学的研究重点从数学物理的角度来讲就是电磁问题的边界条件,或者更一般的,广义(等效)边界条件,界面电磁学中实现的各类对电磁场的操控就是通过对不同电磁问题的边界条件的操控间接实现的。

查看详情

界面电磁学发展历程常见问题

查看详情

界面电磁学相关研究

界面电磁学的相关研究十分丰富多样,所同时涉及到的传统学科也很多,通常可以将界面电磁学的相关研究大致分为三类:界面电磁学的理论研究、电磁表面或界面的设计、界面电磁学的应用。

界面电磁学理论研究

界面电磁学的理论研究通常包括对各类电磁表面或界面(天然的或人造的)的普适理论描述、对电磁表面或界面的各类特性的定义和表征、以及对简单电磁表面或界面的解析计算和对复杂电磁表面或界面的数值计算等等。

界面电磁学设计

利用界面电磁学的基本理论来有效地指导人工电磁表面或界面的设计是界面电磁学的一个重要方向。这类研究通常同时包含着对材料特性、结构设计、加工技术等方向的研究与应用。在界面电磁学这一概念提出以前的许多研究方向都属于这类研究,例如:频率选择性表面(Frequency Selective Surface, FSS)、电磁带隙结构(Electromagnetic Band Gap, EBG)、超表面(Metasurface)、超级透镜(Metalens)、平面阵列天线等等。

界面电磁学应用

随着人工电磁表面或界面的不断发展与进步,越来越多的人工电磁表面或界面被应用在各类微波、太赫兹以及光学的器件和系统中。由于人工电磁表面或界面往往具有低剖面、低成本的特点,并且可以实现各类对电磁场的调控操纵,因此,应用人工电磁表面或界面的器件与系统往往具有同类传统器件或系统所不具备的独特优势。近年来界面电磁学领域的发展也让界面电磁学的应用研究取得了长足的进步。2100433B

查看详情

界面电磁学发展历程文献

电磁学小论文 电磁学小论文

电磁学小论文

格式:pdf

大小:50KB

页数: 3页

变压器的工作原理 王雪品 楚雄师范学院 物理与电子科学系 10 级物理二班 学号: 20101041257 云南省楚雄彝族自治州 邮政编码 675000 摘要:我将通过我对变压器的构造、种类、工作原理的认识来向同学 们简单介绍变压器和怎样去保护变压器和保护自己。 关键词:构造、变压器、工作原理、保护 前言:变压器与我们日常生活息息相关, 我们要对变压器有所了解才 能在用电过程不受伤害和节约用电。 正文 变压器:英文名 (Transformer)是利用电磁感应的原理来改变交流电压 的装置,主要构件是初级线圈(绕组) 、次级线圈和铁心(磁芯) 。 变压器的工作原理 变压器 ---利用电磁感应原理, 从一个电路向另一个电路传递电能或传 输信号的一种电器是电能传递或作为信号传输的重要元件, 将一种电 压的交流电能变换为同频率的另一种电压的交流电能。 变压器原理图 与电源相连的线圈,接收交流

电磁学PPT教学课件 电磁学PPT教学课件

电磁学PPT教学课件

格式:pdf

大小:50KB

页数: 82页

电磁学PPT教学课件

电磁学物理简介

电磁学是研究电、磁、二者的相互作用现象,及其规律和应用的物理学分支学科。根据近代物理学的观点,磁的现象是由运动电荷所产生的,因而在电学的范围内必然不同程度地包含磁学的内容。所以,电磁学和电学的内容很难截然划分,而“电学”有时也就作为“电磁学”的简称。

电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。

导线所载有的电流,会在四周产生磁场,其磁场线是以同心圆图案环绕着导线的四周。

使用电流表可以直接地测量电流。但这方法的缺点是必须切断电路,将电流表置入电路中间。间接地测量伴电流四周的磁场,也可以测量出电流强度。优点是,不需要切断电路。应用这方法来测量电流的仪器有霍尔效应感测器、电流钳(current clamp)、变流器(current transformer) 、Rogowski coil 等等。

电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质与光学性质归结为原子中电子的效应,统一地解释了电、磁、光现象。

电磁学是物理学的一个分支。电学与磁学领域有着紧密关系,广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。主要研究电磁波、电磁场以及有关电荷、带电物体的动力学等等。

查看详情

cem计算电磁学

CEM(Computational electromagnetics)

背景:一些现实世界中的电磁学问题,比如电磁散射与辐射,波导问题等,是无法解析计算的,因为在实际的器件中有很多不规则的几何形状。数值计算技术可以克服在不同本构关系的媒质和边界条件下,无法推导出麦克斯韦方程组闭合形式解的问题。这使得计算电磁学(CEM)在天线,雷达,卫星和其他通讯系统的设计和仿真,纳米光子器件,和高速硅电子,医学成像,手机天线设计等应用中变得很重要。

计算电磁学主要解决了在整个域中计算电场和磁场的问题(比如在一个任意造型的天线结构中,计算天线辐射方向图)。计算功率流向(坡印亭矢量),波导正规模式,媒质产生的波的色散和散射,都能从电场和磁场中计算得到。计算电磁学模型可能会也可能不会利用对称性,把现实世界中的结构简化为理想柱体,球体或者其他的规则几何物体。计算电磁学模型广泛利用了对称,求解降低后的维数,从三维空间到二维空间甚至一维。、

计算电磁学中的本征值问题公式能使我们计算一个结构中的稳态正规模。瞬态响应和脉冲场效应能被计算电磁学中的时域方法,FDTD更精确地模拟出来。弯曲几何对象被有限元法(FEM)或非正交网格更精确地表述出来。光束传播法(Beam propagationmethod)能用来计算波导中的功率流。即使不同的技术融合到同一个领域,计算电磁学有特定的应用。

查看详情

电磁学计量概述

电作为一种能源,自被人类认识以来就和人们的生产和生活密不可分,电的应用大大促进了科学技术的发展,而磁场和磁性材料的存在也和电有着密切的联系。电磁量是和电磁现象有关的物理量,分为电学量和磁学量。人们在不断对电磁应用进行探索的过程中,发明创造了大量的电磁测量仪器、仪表和设备。

电磁学计量包括电压、电流、电阻、电容(或电感)、磁感应强度、磁通和磁矩。电磁学计量内容包含:电磁基本量,如电压、电流、磁通、磁矩等;电磁测量仪器和仪表;比率标准与仪器;材料电磁特性;波形。此外,非电量的电测量及静电、电气和环境安全等电磁干扰参数也是电磁计量的重要内容。按工作频率,电磁学计量分直流计量和交流计量。

电学计量保存、复现、传递的量主要由直流电压,直流电流,交流电压,交流电流,直流电阻,交流电阻,电感,电容,电功率,电能,相位,频率,电荷量,损耗因数,功率因素,时间常数等。保存、复现电学量的计量器具主要有实物量和计量仪器两大类。作为计量基准和计量标志的主要有约瑟夫逊电压自然基准,霍尔电阻自然基准,标准电池,直流标准电阻,RLC测量仪,高阻计,微欧计,直流电位差计,交流电位差计,数字多用表,多功能标准源,交直流转换仪,指示表,直流功率表,交流功率表,功率因数表,电能表,分压箱,分流器,仪用互感器,测量放大器,转换器,感应分压器,霍尔电流传感器等。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639