选择特殊符号
选择搜索类型
请输入搜索
设M是n阶实系数对称矩阵, 如果对任何一非零实向量X,都使二次型f(X)= X′MX>0,则称f(X)为正定二次型,f(X)的矩阵M称为正定矩阵(Positive Definite)。
现在市场的价格战太离谱了,导致很多的商家都必须用低价来吸引客户,所以产品质量往往都得不到保障。力弘(LHLEEHAM)提供全系列会议视听系统矩阵切换控制器,包含产品有同轴矩阵系列AHD/TVI...
楼上恐怕还是不大了解,数字矩阵首先信号是数字信号,数字信号包括:SDI(标清)、HD-SDI(高清)这两种以前都是广播级信号,都是在广播电视应用的,但是现在随着电视会议的发展,已经出现高清电视会议系统...
vga视频矩阵,启耀科技有4,8,16,24,32,48,64路,您需要哪一路,每一路的价格不一样,输入输出路数越多价格越高,这种会议室用的很多的,切换很方便。
矩阵函数和函数矩阵
矩阵函数求导 首先要区分两个概念:矩阵函数和函数矩阵 (1) 函数矩阵 ,简单地说就是多个一般函数的阵列, 包括单变量和多变量函数。 函数矩阵的求导和积分是作用在各个矩阵元素上,没有更多的规则。 单变量函数矩阵的微分与积分 考虑实变量 t 的实函数矩阵 ( )( ) ( )ij m nX t x t ×= ,所有分量函数 ( )ijx t 定义域相同。 定义函数矩阵的微分与积分 0 0 ( ) ( ) , ( ) ( ) . t t ij ijt t d d X t x t X d x d dx dx τ τ τ τ ? ? ? ??? ???= =? ??? ?? ?? ? ?? ?∫ ∫ 函数矩阵的微分有以下性质: (1) ( )( ) ( ) ( ) ( )d d dX t Y t X t Y t dt dt dt + = + ; (2) ( ) ( ) ( )( ) ( ) ( )
1、对于半正定矩阵来说,相应的条件应改为所有的主子式非负。顺序主子式非负并不能推出矩阵是半正定的。
2、半正定矩阵
定义:设A是实对称矩阵。如果对任意的实非零列矩阵X有X*A*X≥0,就称A为半正定矩阵。
3、A∈Mn(K)是半正定矩阵的充分条件是:A的所有主子式大于或等于零。
非正定矩阵,与正定矩阵相反,也是矩阵的一种。
1、P半正定,那么对于一个非0矩阵F,一定有F^T×P×F 也是半正定
对于任意的非零向量x,x^T×(F^T×P×F)×x=(Fx)^T×P×(Fx).
若Fx=0,则x^T×(F^T×P×F)×x=0
若Fx≠0,则x^T×(F^T×P×F)×x≥0
所以,x^T×(F^T×P×F)×x≥0恒成立,所以,F^T×P×F半正定.
2、P正定,那么对于一个非0矩阵F,不一定F^T×P×F 也是正定的
对于任意的非零向量x,x^T×(F^T×P×F)×x=(Fx)^T×P×(Fx).
若Fx=0,则x^T×(F^T×P×F)×x=0
若Fx≠0,则x^T×(F^T×P×F)×x>0
所以,x^T×(F^T×P×F)×x>0不恒成立,所以,F^T×P×F不一定正定,只能是半正定.
如果加上条件“F可逆”,则F^T×P×F一定正定.2100433B
定义 一个n× n的埃尔米特矩阵M是正定的当且仅当对于每个非零的复向量z,都有z*Mz > 0,则称M为正定矩阵,其中z* 表示z的转置矩阵。当z*Mz > 0弱化为z*Mz≥0时,称M是半正定矩阵由于 M是埃尔米特矩阵,经计算可知,对于任意的复向量z,z*Mz必然是实数,从而可以与0比较大小.
与正定矩阵相对应,一个n× n的埃尔米特矩阵M是负定矩阵,当且仅当对非零的复向量z都有:z*Mz < 0.
具有对称矩阵A的二次型f=x'Ax
如果对任何非零向量x,都有x'Ax≥0(或x'Ax≤0)成立,且有非零向量x0,使x0'Ax0=0,则称f为半正定(半负定)二次项,矩阵A称为半正定矩阵(半负定矩阵)