选择特殊符号
选择搜索类型
请输入搜索
本丛书以各种常见的建筑工程施工中容易出现的问题及相应的解决方案与预防措施为基本内容,通过对于现场施工图片的分析,提供给读者更为直观的参考和借鉴。本书通过对错误做法的直观认知,加上对于出现这种情况的原因分析,再辅以正确的施工介绍,从而对广大读者的实际工作有一个非常实用而便捷的指导。本书内容来源于实际施工现场,提供分析与解决方案的人,仍然依托于长期处于施工一线的技术专家,将枯燥、生硬的施工规范、标准与现场实际施工结合起来,既有很好的理论依据,又具有非常好的现场操作性。
施工问题、快速处理。本书无论对于建筑工程现场施工从业人员,还是相关专业的学生,都有较强的参考价值。2100433B
你好: 1、K1O是钢筋的编号。你看下板筋下面的文字说明应该有说明K10表示多少的钢筋。
1 本建筑施工中存在的问题分析 1.1 ...
建筑工程中的问题主要有噪音污染、泥浆污染、灰尘固体悬浮物污染、基坑开挖时对周围环境的危害、光污染和固体废弃物产生的污染。 其中噪音是建筑施工中居民反应最强烈和常见的问题。据统计,在环境噪声源中,建筑施...
88个建筑施工问题合集
88 个建筑施工问题合集 建筑电气 (一)屋面防雷接地 1、高层建筑屋顶应设避雷针或避雷带,应对建筑物和屋面设备 起到保护作用。 2、避雷带宜用 ? 10 以上镀锌圆钢,采用支架卡子固定,不得 T 焊,支架应有足够的强度且镀锌层良好。 3、架直线段间距为 0.5 ~1m ,在直角弯处应对称, 距弯 300 ~ 500mm 。支架高度为 150mm 。 4、雷带跨越建筑物变形缝室应设补偿器。 5、避雷带应平直、镀锌层完好.接头应采用双面焊接,搭接长 度 6 倍直径。 6、焊扣、焊口须防腐处理。 7、防雷接地在室外距地面 500mm 处设测试点。 数量按设计图 纸。 8、屋面接地干线应从接地装置直接引出,接地干线和支线应接 地明显可靠、不可拆卸的永久性连接。 9、面的设备、全属构件、全属管道、金属支架、电气设备金属 外壳都必须和接地干线可靠连接。 10 、保护接地线必须并连连接,不得串连。 1
工业与民用建筑施工问题分析
随着我国经济的快速发展,各行各业都在迅速的起步,建筑行业作为我国社会经济建设的重要内容,对我国社会的发展具有很大的帮助。同时,现代技术与传统丰富建筑技术经验相结合,又为我国建筑行业的发展提供了新的活力。但是在实际的建设过程中,我国的建筑技术等方面取得了一定的成绩,但是仍然面临着许多问题。因此,本文就对工业与民用建筑工程过程中存在的问题进行相应的分析和探讨,从而提供一些解决措施,以确保我国以后建筑行业能够可持续发展。
原始奥氏体晶粒小的好处是,相变时产生的马氏体片也小。这不仅提高强度,而且也改善延性和韧性。一种能大大细化原奥氏体晶粒的方法是,用很快的速率加热至奥氏体化温度,并在刚高于AC3温度处作非常短时间的保温。这时可用瞬间过热来溶解碳化物,而又不至于粗化奥氏体晶粒。
由于马氏体晶粒细化以及淬火时位错密度的提高,这种处理能使屈服应力提高约10%。位错密度提高的原因还不很清楚,但在200℃以下的回火不能消除这些位错,于是冲击性能变差。提高回火温度确能消除位错,这时性能主要由极细的回火马氏体片尺寸控制。采用400℃以上的回火温度,快速热处理能改善冲击性能,但效果不很大。有证据表明,奥氏体形变热处理前,如果不用普通奥氏体化而采用快速热处理,强度虽只有少量提高,但韧性却大大提高。原因主要是快速奥氏体化产生的晶粒细。
快速奥氏体化处理,用于显著改善超高强度钢的强度和韧性,主要还局限于实验室研究。尚有许多控制上的问题存在。因为钢的热学参数使作这样热处理的零件截面尺寸受到限制,除非有的只要求表面薄层的性能。
快速渗滤系统(Rapid Infiltration, RI)是一种高效的土地处理技术,适用于透水性良好的土壤,如砂土、壤土砂或砂壤土。该系统将污水有控制地投配到具有良好渗滤性能的土地表面,在污水向下渗滤的过程中,在过滤、沉淀、氧化、还原以及生物氧化、硝化、反硝化等一系列物理、化学及生物的作用下,使污水得到净化处理,如图3所示。图3中,(a)为快速渗滤的水流路径;(b)为地下排水管集水;(c)管井集水。
2100433B
第1章感应加热技术的发展与在钢材热处理中的应用
1.1感应加热技术的发展概况
1.1.1感应加热技术的产生与演变
1.1.2感应加热技术的工业应用
1.2感应加热技术在钢材快速热处理领域的应用
1.2.1无缝钢管感应加热快速热处理方面的应用
1.2.2焊接钢管感应加热快速热处理方面的应用
1.2.3棒材感应加热快速热处理方面的应用
1.2.4钢丝感应加热快速热处理方面的应用
1.2.5钢轨感应加热热处理的应用
1.2.6带材和板材感应加热快速热处理方面的应用
1.3钢材感应加热快速热处理工艺的特点
1.3.1显著改善钢材的力学性能和表面质量
1.3.2改善钢材的特殊性能
1.3.3降低钢材热处理时的能源消耗
1.3.4感应加热快速热处理工艺是绿色环保型工艺
第2章钢材感应加热快速热处理的基本原理
2.1钢材感应加热的物理原理
2.1.1钢材感应加热的基本电路与磁、电、热能的转化
2.1.2电磁感应现象与法拉第电磁感应定律
2.1.3电流的热效应与焦耳.楞茨定律
2.1.4感应电流在金属内部分布的特点
2.1.5金属内部热传导与温度的均匀化
2.2钢材感应加热快速热处理的金属学基础
2.2.1传统加热时奥氏体的形成过程
2.2.2感应加热对奥氏体形成过程的影响
2.2.3感应加热奥氏体冷却过程的组织转变
2.2.4感应加热淬火钢回火时的组织转变
第3章钢材感应加热快速热处理设备
3.1钢材感应加热快速热处理用加热电源
3.1.1感应加热电源主电路的基本结构
3.1.2晶闸管中频感应加热电源
3.1.3晶体管超音频感应加热电源
3.1.4高频感应加热电源
3.1.5钢材感应加热快速热处理用电源类型的选择
3.2感应加热电源频率的选择
3.2.1感应加热电源频率与加热效率的关系
3.2.2感应加热电源频率与加热温度和温度均匀性的关系
3.2.3感应加热电源频率与加热钢材尺寸的关系
3.2.4感应加热电源频率与变频电源投资费用的关系
3.2.5感应加热电源频率选择的综合分析
3.3感应加热电源功率的选择与确定
3.3.1感应加热快速热处理用电源功率的平衡分析
3.3.2感应加热电源功率容量的计算方法
3.3.3感应加热钢材快速热处理用电源设备的选择
3.4感应加热钢材快速热处理用感应器
3.4.1钢材感应加热快速热处理用感应器的分类
3.4.2钢材感应加热快速热处理用感应器与电源的连接方式
3.4.3感应加热用感应器的参数选择与计算
3.5感应加热快速热处理用机械装置
3.5.1钢材的供料和收料机构
3.5.2钢材的水平传送机构
3.5.3钢材自身旋转机构
3.5.4钢材夹持辊和热校直装置
3.6钢材感应加热快速热处理生产线概况
3.6.1无缝钢管感应加热调质处理生产装置
3.6.2棒材感应加热快速热处理装置
3.6.3线材感应加热快速热处理生产线
第4章钢材感应加热快速热处理的工艺问题
4.1感应加热过程钢材的透热问题
4.1.1感应加热时金属的升温曲线
4.1.2感应加热时金属升温过程的特点
4.1.3感应加热钢材透热时间的近似计算方法
4.2感应加热过程钢材温度的均匀性
4.2.1感应加热钢材径向温度的均匀性及影响因素
4.2.2感应加热钢材纵向温度的均匀性及影响因素
4.3感应加热钢材温度的测量与控制
4.3.1感应加热钢材温度的测量方法
4.3.2感应加热钢材温度的控制方法
4.4感应加热快速热处理的加热与冷却问题
4.4.1感应加热快速热处理时的淬火加热
4.4.2感应加热快速热处理时的淬火冷却
4.4.3感应加热快速热处理用淬火介质
4.4.4感应加热快速热处理时的回火加热与冷却
4.5感应加热快速热处理时钢材的外观质量
4.5.1感应加热快速热处理钢材的氧化与脱碳
4.5.2感应加热快速退火处理时冷拉材直径的变化
4.5.3感应加热调质处理钢管的变形与尺寸变化
第5章无缝钢管感应加热快速热处理
5.1低合金热强钢钢管感应加热快速正火处理
5.1.1低合金热强钢的概况
5.1.2低合金热强钢的感应加热复合热处理工艺
5.2高强度小口径无缝钢管的感应加热调质处理
5.2.1高强度小口径无缝钢管的应用概况
5.2.2高强度小口径无缝钢管感应加热调质处理工艺
5.2.3感应加热调质处理小口径无缝钢管的性能特点
5.2.4感应加热调质处理小口径钢管的使用效果
5.3石油天然气钻采用无缝钢管的感应加热调质处理
5.3.1石油天然气钻采用钢管的应用概况
5.3.2石油天然气钻采用钢管的感应加热调质处理工艺
5.3.3感应加热调质处理石油天然气钻采用钢管的性能特点
第6章焊接钢管感应加热快速热处理
6.1感应加热焊缝热处理在焊管生产中的应用概况
6.1.1感应加热焊缝热处理的目的
6.1.2感应加热焊缝热处理方法
6.2焊缝感应加热正火处理
6.2.1焊缝感应加热正火处理温度的选择
6.2.2焊缝感应加热正火保温时间和冷却方式
6.2.3焊缝感应加热正火处理后的力学性能
6.3焊缝感应加热调质处理
6.3.1焊缝感应加热淬火与自行回火处理工艺
6.3.2焊缝感应加热淬火与回火处理工艺
6.4焊缝横向磁场感应加热的工艺控制
6.4.1直缝焊管焊缝横向磁场感应加热
6.4.2焊缝加热温度的测量与调控
6.4.3焊缝加热的对准装置
第7章条材感应加热快速热处理
7.1热轧棒材感应加热调质处理
7.1.1热轧棒材感应加热调质处理概况
7.1.2热轧棒材感应加热调质处理工艺
7.1.3感应加热调质处理热轧棒材的性能特点
7.2棒材感应加热快速球化退火处理
7.2.1传统球化退火处理过程及其存在问题
7.2.2感应加热快速球化退火处理工艺
7.3PC钢材的感应加热调质处理
7.3.1PC钢材的生产概况
7.3.2PC钢材感应加热调质处理工艺
7.3.3PC钢材感应加热调质处理生产线
7.3.4感应加热调质处理PC钢材的力学性能
7.4奥氏体气阀钢条材感应加热固溶处理
7.4.1奥氏体气阀钢条材固溶处理概况
7.4.2奥氏体气阀钢条材感应加热固溶处理工艺
7.4.3感应加热固溶处理奥氏体气阀钢的性能特点
7.4.4奥氏体钢条材感应加热固溶处理工艺的推广应用
7.5双相气阀钢条材感应加热固溶处理
7.5.1双相气阀钢条材固溶处理概况
7.5.2双相气阀钢30Cr13Ni7Si2条材的感应加热固溶处理工艺
7.5.3感应加热固溶处理气阀钢30Cr13Ni7Si2的性能特点
7.6钢轨感应加热热处理
7.6.1钢轨强化的热处理方法
7.6.2感应加热钢轨头部欠速淬火处理(SQ处理)概况
7.6.3感应加热钢轨欠速淬火处理工艺参数的选择
7.6.4感应加热SQ处理钢轨的力学性能
7.7冷拉轴承钢材感应加热快速退火处理
7.7.1冷拉轴承钢材退火处理工艺概况
7.7.2冷拉轴承钢材感应加热快速退火工艺
7.7.3感应加热快速退火处理冷拉轴承钢材的性能特点
7.7.4感应加热快速退火处理后冷拉轴承钢材内应力的状况
7.7.5感应加热快速退火处理后轴承钢的球化组织状态
第8章钢丝感应加热快速热处理
8.1预应力钢丝的感应加热稳定化处理
8.1.1预应力钢丝感应加热稳定化处理概况
8.1.2预应力钢丝感应加热稳定化处理工艺
8.1.3预应力钢丝感应加热稳定化处理的效果
8.2高碳钢丝感应加热(半程)索氏体化处理
8.2.1高碳钢丝索氏体化处理概况
8.2.2高碳钢丝半程感应加热索氏体化处理工艺
8.2.3高碳钢丝半程感应加热索氏体化处理的工艺问题
8.3高碳钢丝全程感应加热索氏体化处理
8.3.1高碳钢丝全程感应加热索氏体化处理的基本工艺过程
8.3.2高碳钢丝全程感应加热索氏体化处理的试验结果
8.4弹簧钢丝感应加热调质处理
8.4.1弹簧钢丝调质热处理的应用概况
8.4.2弹簧钢丝感应加热调质处理工艺
8.4.3弹簧钢丝感应加热调质处理工艺参数的选择
8.4.4感应加热调质处理弹簧钢丝的性能特点
8.5盘卷线材感应加热井式炉退火处理
8.5.1感应加热井式退火炉的结构
8.5.2感应加热井式炉盘卷线材的退火处理工艺
8.5.3感应加热井式退火炉的改进方向
第9章板材、带材感应加热快速热处理
9.1奥氏体不锈钢板材感应加热固溶处理
9.1.1钢板纵向磁场感应加热固溶处理装置
9.1.2钢板感应加热固溶处理工艺参数的选择
9.1.3感应加热固溶处理时钢板的变形
9.1.4钢板感应加热固溶处理时的生产率和单位能耗
9.2带材横向磁场感应加热快速热处理
9.2.1带材横向磁场感应加热
9.2.2带材横向磁场感应加热时的特点
9.2.3带材横向磁场感应加热退火处理
9.2.4横向磁场感应加热带材退火处理时的工艺问题
9.2.5奥氏体不锈钢带材横向磁场感应加热固溶处理
第10章半制品坯料的感应加热快速热处理
10.1钢管感应加热弯管及其热处理
10.1.1感应加热弯管的复合调质处理工艺
10.1.2感应加热复合调质处理弯管的力学性能
10.2液压支柱用钢管坯料感应加热调质处理
10.2.1液压支柱用钢管的化学成分与力学性能
10.2.2液压支柱用钢管坯料感应加热调质处理装置
10.2.3感应加热调质处理液压支柱油缸钢管的效果
10.3短棒材坯料中频感应加热调质处理
10.3.1活塞杆坯料感应加热调质处理工艺
10.3.2调质处理工艺参数的选择
10.3.3活塞杆感应加热调质处理后的性能
第11章钢材感应加热快速热处理时的能源消耗
11.1钢材感应加热快速热处理时的单位能耗
11.1.1钢材加热时的理论单位能耗
11.1.2钢材加热时的实际单位能耗
11.1.3感应加热快速热处理时钢材的单位能耗
11.2钢材感应加热快速热处理时的能源利用状况
11.2.1能源利用率及其计算方法
11.2.2钢材感应加热快速热处理时的能源利用率
11.3感应加热快速热处理的节能特点
11.3.1钢材感应加热的节能特点
11.3.2钢材感应加热快速热处理的工艺节能特点
参考文献2100433B