选择特殊符号
选择搜索类型
请输入搜索
这种方法的操作步骤是:首先,项目的上层管理人员收集以往类似项目的有关历史资料,以过去类似项目的参数值(持续时间、预算、规模、重量和复杂性等)为基础,并且依据自己的经验和判断,估算当前(未来)相同项目的总成本和各分项目的成本;然后,将估算结果传递给下一层管理人员,并责成他们对组成项目和子项目的任务和子任务的成本进行估算,并继续向下传送其结果,直到项目组的最基层人员。
“类比估算”,顾名思义是通过同以往类似项目相类比得出估算,为了使这种方法更为可靠和实用,进行类比的以往项目不仅在形式上要和新项目相似,而且在实质上也要非常相同。
这种方法简单易行,花费较少,尤其当项目的资料难以取得时,此方法是估算项目总成本的一种行之有效的方法。但是,它也有一定的局限性,进行成本估算的上层管理者根据他们对以往类似项目的经验对当前项目总成本进行估算时,由于项目具有一次性、独特性等特点,在实际生产中,根本不可能存在完全相同的两个项目,因此这种估算的准确性较差。
用这种方法进行整体估算时比较准确,可以避免过分重视一些任务而忽视另外一些任务。但是可能出现下层人员认为分到的估算不足以完成任务,却保持沉默。2100433B
全站仪操作步骤
全站仪操作步骤 1.架好仪器,对中整平。 2.开机→按 MENU键→F3(存储管理)→ F4(翻页)→ F1(输 入坐标)→ F1(输入)输入一个文件名,如: File ,回车后 输入点名如 A,回车后输入坐标( N,E,Z),输入完后回车 输入第二个点名如 B,回车后输入坐标( N,E,Z),回车后 进入输第三个点界面,这时按两次 ESC退出到“数据采集” 界面。 3.按 F1(数据采集)→ F1(输入)输入刚才的文件名 File , →F1(输入测站点)→ F4(测站)→ F2(调用)找到 A,回 车,检查屏幕显示的坐标是否正确,是则按 F3(是)→输入 仪高(如 1.5 米),按 F3(记录)→ F3(是)。这时返回到 了数据采集界面。 4.全站仪照准后视点, 按 F2(输入后视点) →F4(后视)→F2 (调用) 找到 B点,F4(回车) →F3(是)→F3(测量)→ F1 (角度
广联达操作步骤
广联达操作步骤: 新建工程——新建楼层——新建轴网——绘图输 入——汇总查量 新建工程: 1、 第一步工程名称 注意计算规则一定要选择正确, 其他根据不同省份修改,福建省选择不计算损耗 和全统 2000 2、 第二步工程信息 黑色字体只起到标示作用, 只需 要修改蓝色字体的信息,详细看图纸。 3、 第四步比重设置 当图纸中所有的直径为 6的钢 筋都为一级钢筋时要把的比重复制到 6的比重 内。 新建楼层: 1、 插入楼层:鼠标点击到基础层或者地下层的时候 再点击插入楼层是新建地下楼层,鼠标点击到首 层或者其他地上楼层时是新建地上楼层。 2、 只有楼层名称、层高、首层底标高等白色底纹的 能进行修改。 3、 楼层钢筋设置主要修改抗震等级(一个工程出现 多个抗震等级时)、混凝土标号、保护层厚度。 新建轴网: 1、一般都是以柱平面图的轴网为准。 2、操作步骤:新建轴网—定义属性 (上下开间或左右
类比讯号利用物件的一些物理属性来表达、传递讯息。例如,非液体气压表利用指标螺旋位置来表达压强讯息。在电学中,电压是类比讯号最普遍的物理媒介,除此之外,频率、电流和电荷也可以被用来表达类比讯号。
任何的讯息都可以用类比讯号来表达。这里的讯号常常指物理现象中被测量对变化的响应,例如声音、光、温度、位移、压强,这些物理量可以使用感测器测量。类比讯号中,不同的时间点位置的讯号值可以是连续变化的;而对於数位讯号,不同时间点的讯号值总是处於预先设定的离散点,因此如果物理量的真实值不能在这些预设值中被找到,那麼这时数位讯号就与真实值存在一定的偏差。
类比讯号的主要优点是其精确的解析度,在理想情况下,它具有无穷大的解析度。与数位讯号相比,类比讯号的讯息密度更高。由於不存在量化误差,它可以对自然界物理量的真实值进行尽可能逼近的描述。
类比讯号的另一个优点是,当达到相同的效果,类比讯号处理比数位讯号处理更简单。类比讯号的处理可以直接透过类比电路元件(例如运算放大器等)实作,而数位讯号处理往往涉及复杂的演算法,甚至需要专门的数位讯号处理器。
分类
这三种传递过程有相同的传递机理,相同的数学表达形式。1874年O.雷诺首先指出热量与动量传递之间的类似性,并给出摩擦因子与传热分系数之间的定量关系。随后L.普朗特于1910年、G.I.泰勒于1916年和T.卡门于1939年相继对雷诺类比作了改进。有的提出了新的类比关系,并推广到动量传递和质量传递的类比。在类比关系的基础上,可以根据已知的一类传递规律,类推其他两种传递的规律。常见的类比关系有以下四种:
雷诺类比
雷诺假定单位时间内质量为M的流体微团,从距壁面一定距离处向壁面运动,其流速由u降为零。以整个流场均为湍流的假设为基础,认为流体微团直接将热量带到了壁面,而忽略了近壁处存在层流底层。
普朗特类比
普朗特考虑到壁面附近有层流底层,流体到达层流底层后,不再以对流方式而以热传导方式进行传热。
卡门类比
卡门在前人的基础上提出一个三层模型,他认为,在湍流核心与层流底层之间还有一个过渡区。
柯尔本类比
A.P.柯尔本应用管内湍流传热的经验式Nu=0.023Re0.8Pr1/3、范宁摩擦因子的经验式f=0.046Re,上述其他三个类比应用于传质时,也有相对应的关系式。在Hr=0.5~50的范围内j因子经常用于关联传热、传质的实验数据。当出现边界层分离时,除了摩擦阻力外,还存在压差阻力(流动阻力),这时类比式不再适用,但jd和jh仍相等。