选择特殊符号
选择搜索类型
请输入搜索
相量测量单元(phasor measurement unit,PMU)是广域测量系统的重要组成部分,已在电力系统的实时分析和监控中得到应用。PMU优化配置工作主要集中在满足全局可观测或N-1故障情况可观测条件下减少的PMU数量,且大部分文献考虑的都是在系统中一步到位配置所有的PMU。实际上,由于PMU价格昂贵,系统难以一次性安装全部所需的PMU,且电力系统网架也处于改造升级的多阶段动态发展中,现有的PMU配置有可能会出现由于网络拓扑结构发生改变而导致一些节点或线路不可测的情况出现。
针对电力系统网架难以一次性全部安装所需的相量测量单元PMU的问题,吴霜 等提出考虑量测冗余度的多阶段PMU优化配置方法。首先给出系统量测冗余度的计算方法,在保证每一阶段最大限度地提高系统量测冗余度及考虑已有PMU配置的基拙上,将PMU优化配置分为2个阶段:第1阶段保证系统全局可观测;第2阶段保证在线路N-1故障情况下不丧失对系统的观测能力。接着采用改进遗传禁忌搜索算法,对新英格兰39节点和IEEE 118系统进行算例仿真,得到多阶段PMU优化配置方案。结果表明:考虑冗余度的多阶段PMU优化配置方法在保证每一阶段安装的PMU都能发挥最大效用的同时,很好地协调了PMU配置的经济性和可靠性。 2100433B
参数错误会对状态估计以及在此基础上进行的计算、分析和控制产生长期的不利影响。但是相对状态估计而言,有关电网支路参数估计的研究相对较少。己有的电网支路参数估计方法包括残差灵敏度分析法、增广状态估计法、启发式算法、基于相量测量单元量测的方法等。这些方法各具特点,但由于参数估计对量测噪声较为敏感,在较小的量测冗余度下,往往难以得到理想的估计结果。因此,继续深人研究电网支路参数估计问题具有重要意义。
朱建全等 综合考虑了电力系统参数估计对量测冗余度要求相对较高,以及系统量测设备有限、参数维护工作难度大等实际情况,着眼于研究一种基于主导性评估的电网支路参数估计方法,以有效解决在一定的量测条件下应该对哪些参数进行估计的问题,并能在此基础上形成对主导性不同的参数进行交替估计的新方法,以提高估计算法的精度和数值稳定性。
状态估计(state estimation)根据可获取的量测数据估算动态系统内部状态的方法。对系统的输入和输出进行测量而得到的数据只能反映系统的外部特性,而系统的动态规律需要用内部(通常无法直接测量)状态变量来描述。因此状态估计对于了解和控制一个系统具有重要意义。
在确定性情形下,线性系统的状态估计的主要方法有吕恩伯格观测器。只有系统的能观测部分(见能观测性)的状态才能重构,而且能以任意快的速度来重构,但在具体实现时则受到噪声、灵敏度等因素的限制。在系统的装置或其观测通道受有随机噪声干扰时,则必须用统计估计方法来处理。依观测数据与被估状态在时间上的相对关系,状态估计又可区分为平滑、滤波和预报3种情形。
简单地说,所谓冗余度,就是从安全角度考虑多余的一个量,这个量就是为了保障仪器、设备或某项工作在非正常情况下也能正常运转。目前大多现代产品和工程设计中都应用了冗余度这个思想和理论。在许多医疗单位中药品存...
定义:冗余度,就是从安全角度考虑多余的一个量,这个量就是为了保障仪器、设备或某项工作在非正常情况下也能正常运转。概念:简单地说,所谓冗余度,就是从安全角度考虑多余的一个量,这个量就是为了保障仪器、设备...
简单地说,所谓冗余度,就是从安全角度考虑多余的一个量,这个量就是为了保障仪器、设备或某项工作在非正常情况下也能正常运转。目前大多现代产品和工程设计中都应用了冗余度这个思想和理论。在许多医疗单位中药品存...
量测冗余度:量测量个数m与待估计的状态量个数n之间的比值m/n。
系统冗余度越高,对状态估计采用一定的估计方法排除不良数据和消除误差影响就越好。冗余测量的存在是状态估计可以提高数据精度的基础。量测冗余度的高低是决定状态估计结果好坏的重要条件。
水资源水质水量优化配置分析
本研究旨在实现水资源水质水量的优化配置,通过对水资源水质水量优化配置的生态经济学理论进行分析,指出水资源水质水量优化配置的概念,在内涵分析基础上确定了水资源水质水量优化配置的具体阈值原理和模型体系框架.同时对青海水资源水质水量的优化配置进行分析,指出不同区域的水资源水质水量需要进行针对性的优化配置.
_全效修_维修资源的配置与优化
_全效修_维修资源的配置与优化
(1)水面量测( water level measurement):对水体自由表面位置的测定。水面量测是水工、河工、港工试验中重要量测项目之一,主要用于量测水位和波浪。
水位量测往往要与基准面的高程相联系,对量测仪器的准确度和长期稳定性有较高的要求。常用的仪器有测针和自动跟踪水位计等。
波浪量测是通过测定水面波动的过程,从而推算出波高、波周期、波谱特性等参数。由于水面波动较快,故对量测仪器的动态特性有一定要求。波浪的量测可采用各种形式的波高仪。
现代的水工试验,不论是水位还是波浪的量测,都采用电脑对水面量测的数据进行集中采集和数据处理。
(2)流速量测( flow velocity measurement):对水质点运动速度的数值大小及方向的测定。流速量测是水流实验中重要的量测内容之一。
在恒定流中,一般进行时均流速的量测;而在非恒定流中,则要量测流速随时间的变化过程。对变化缓慢的非恒定流(例如潮流)可用间隔一定时间量测一短时段内时均流速的办法来反映流速变化过程:对于脉动流速(不论在恒定流或是非恒定流中)的量测,都要测得流速随时间变化的动态过程,并分析出流速脉动的频率和强度等。
严格说来,为了描述流体的流动要进行三维流速量测。但不少试验可忽略某一方向的流速,简化为二维的流速量测。在某些管道流、明渠流中甚至可简化为一维流速量测。
(3)流量量测(实验室)( flow measurement in lab: discharge measurement in lab):对单位时间内通过某一过水断面的流体体积的测定。测定流量的仪表称为流量计。目前实验室内常用的有压差类、堰槽类、转子类、电磁类、超声类等几种类型。
(4)水温量测( water temperature measurement):使用温度计对水体温度场的测定。在与热力因素有关的水力学试验中,水温是主要的量测项目之一。
(5)掺气浓度量测( air concentration measurement) :对水气二相流中空气浓度的测定。为了研究掺气水流运动规律,有必要测定水流断面平均含气浓度及点时均含气浓度和脉动含气浓度。测量方法有多种,如水面线估量法、光学法、取样法、同位素法、电学法等,常用的有取样浓度仪、y射线浓度仪、电阻浓度仪及针形点掺气浓度仪4种。
(6)压强量测(pressure measurement):对流体作用于单位面积上的法向力的测定,压强通常分为相对压强和绝对压强。前者是测点水压强与大气压强之差:后者是包括大气压强在内的总压强。测定压强的仪表称为压力计,按其作用原理可分为液柱式压力计、机械式压力计和电测压力传感器等。
包括水面量测、流速量测、流量量测、压强量测、水温量测、流动显示、掺气浓度量测、空化噪声量测、水激振动量测等。
净空变形量测,又称净空位移量测、收敛量测。指用收敛计测量开挖后隧道周边轮廓向其内侧发生的相对位移。收敛量测已成为研究隧道施工的安全性、支护效果、支护施工时机、支护方法等的简便而有效的基本施工管理量测方法,是围岩监控量测的必测项目之一。测线的布置与被测断面的形状和尺寸、围岩条件及开挖方式有关。当断面较大日围岩软弱时,测线布置略多。
学科:坑探工程
词目:净空变形量测
英文:convergence measure2100433B