选择特殊符号
选择搜索类型
请输入搜索
零矩阵,在数学中,特别是在线性代数中,零矩阵即所有元素皆为0的矩阵。
现在市场的价格战太离谱了,导致很多的商家都必须用低价来吸引客户,所以产品质量往往都得不到保障。力弘(LHLEEHAM)提供全系列会议视听系统矩阵切换控制器,包含产品有同轴矩阵系列AHD/TVI...
楼上恐怕还是不大了解,数字矩阵首先信号是数字信号,数字信号包括:SDI(标清)、HD-SDI(高清)这两种以前都是广播级信号,都是在广播电视应用的,但是现在随着电视会议的发展,已经出现高清电视会议系统...
vga视频矩阵,启耀科技有4,8,16,24,32,48,64路,您需要哪一路,每一路的价格不一样,输入输出路数越多价格越高,这种会议室用的很多的,切换很方便。
矩阵函数和函数矩阵
矩阵函数求导 首先要区分两个概念:矩阵函数和函数矩阵 (1) 函数矩阵 ,简单地说就是多个一般函数的阵列, 包括单变量和多变量函数。 函数矩阵的求导和积分是作用在各个矩阵元素上,没有更多的规则。 单变量函数矩阵的微分与积分 考虑实变量 t 的实函数矩阵 ( )( ) ( )ij m nX t x t ×= ,所有分量函数 ( )ijx t 定义域相同。 定义函数矩阵的微分与积分 0 0 ( ) ( ) , ( ) ( ) . t t ij ijt t d d X t x t X d x d dx dx τ τ τ τ ? ? ? ??? ???= =? ??? ?? ?? ? ?? ?∫ ∫ 函数矩阵的微分有以下性质: (1) ( )( ) ( ) ( ) ( )d d dX t Y t X t Y t dt dt dt + = + ; (2) ( ) ( ) ( )( ) ( ) ( )
矩阵
第五章 矩 阵 §5.1 矩阵的运算 1.计算 421 421 421 963 642 321 ; 412 503 310 231 4102 2013 ; n n b b b aaa 2 1 21 ,,, ; n n bbb a a a ,, 21 2 1 ; 113 210 121 121 011 132 113 210 121 . 2.证明,两个矩阵 A 与 B 的乘积 AB 的第 i 行等于 A 的第 i 行右乘以 B, 第 j 列等于 B的第 j 列左乘以 A. 3.可以按下列步骤证明矩阵的乘法满足结合律: (i) 设 B=( ijb )是一个 n p矩阵.令 j = njj bjbb ,,2,1 是 B的第 j 列, j=1,2,⋯ ,p. 又 设 pxxx ,,, 21 是 任 意 一 个 p 1 矩 阵 . 证 明 : B = ppxxx 211 . (ii)设 A 是一个
设矩阵A∈R(mxn)存在零空间,则总能找到一个nxnull(A)阶的矩阵P,满足条件AP=0,矩阵P的列向量张成N(A)空间,称P为A的零度矩阵。
指的是方阵的行列式不为零的矩阵。如果用A表示该矩阵,那么非零矩阵可表示为│A│≠0。
定义1:用初等行变换将矩阵A化为阶梯形矩阵, 则矩阵中非零行的个数就定义为这个矩阵的秩, 记为r(A),根据这个定义, 矩阵的秩可以通过初等行变换求得。需要注意的是, 矩阵的阶梯形并不是唯一的, 但是阶梯形中非零行的个数总是一致的。
定义2:在
(1)有某个r阶子式
(2)所有r 1阶子式
称A的秩为r,记作R(A)=r。规定:R(O)=0.
对
若R(A)=n,称A为列满秩矩阵。
对
若R(A)