选择特殊符号
选择搜索类型
请输入搜索
通过理论计算,结合弹性地基梁理论、“m”法,对桩、盖梁及预应力钢筋进行空间有限元分析,得出以下结论:
(1)桩顶产生4~12 cm 侧向位移,导致西侧桥台绝大部分桩身的内外侧均有超过桩身混凝土抗拉强度标准值部分,依据计算模型,预估桩身混凝土已经开裂。
(2)采用锚碇板预应力钢筋加固总体上是可靠、有效的,在一定程度上减小了桩基变形及应力,并避免了桩基的进一步破坏,但需要采用预拉力和位移双控的办法进行实施。
(3)为检验桥台的加固效果及其抗侧向变形能力,对桥头路段进行静力加载实验,测试结果显示,桥头侧向最大变形 3 mm,残余侧向变形 1 mm;桥头堆载路段范围内的沉降最大值 5 mm,卸载后回弹残余量小。表明桥台经加固后在不利荷载作用下工作状况良好。
锚定板挡土墙是由墙面、拉杆、锚定板以及充填墙面与锚定板之间的填土所共同组成的一个整体,依靠拉杆和锚定板的抗拔力来保持挡土墙的稳定,其拉杆及其墙部的锚定板均埋设在回填土中,其抗拔力来源于锚定板前填土的被动抗力。本工程采用柱板式挡土墙,墙面由肋柱与挡土板拼装而成,设计过程主要是:
1)计算分析墙面土压力;
2) 计算立柱;
3) 确定钢拉杆上的拉力;
4) 确定锚定板的抗拔力;
5) 结构的整体稳定性分析五个问题。计算方法可参考铁道部锚定板研究组制定的《旱桥锚定板桥台设计原则》和《锚定板挡土墙设计原则》等资料。
1) 土压力计算一般按主动土压力计算,要采取一个土压力增大系数m,肋柱间距取2. 2 m,混凝土等级为C35,计算出土压力强度,按简支梁计算出挡土板配筋。
2) 肋柱为受弯构件,主要承受由挡板传来的土压力,并以拉杆作为水平反力的支点。肋柱应按弹性支撑连续梁计算其各个支点的反力,各截面的弯矩和立柱低端的受力情况。经计算确定肋柱截面和配筋。
3) 拉杆长度按整体稳定性要求决定,应采用延伸性和可焊性好的热轧钢筋及螺丝端杆组成,根据立柱的支座处的支反力求出拉杆拉力,在立柱竖直,拉杆水平时,拉力即等于支反力,在确定拉杆截面时取抗拉安全系数为1. 7。最下层拉杆的长度除满足稳定性要求外,应使锚定板埋置于主动破裂面以外不小于3. 5h 处( h 为矩形锚定板的高度) ; 最上层拉杆的长度应不小于3 m。考虑到上层锚定板的埋置深度对其抗拔力的影响,最上层拉杆至填土顶面的距离取2 m。拉杆计算直径在计算的基础上增加2 mm,作为防钢材锈蚀的安全储备。
4) 锚定板分为浅埋和深埋两种情况,埋置深度小于3 m时,按浅埋考虑,设计中最上层的锚定板宽度方向连续,根据相关公式计算其极限抗拔力。以下几层埋置深度大于3 m,按深埋考虑,其单位容许抗拔力为100 kPa ~ 150 kPa。锚定板采用方形钢筋混凝土板,混凝土标号为C35,竖直埋置在填土中,故忽略不计拉杆与填土之间的摩擦阻力,则锚定板承受的拉力即为拉杆拉力。锚定板的厚度和钢筋配置分别在竖直方向和水平方向按中心支承的单向受弯构件计算,并假定锚定板竖直面上所受的水平土压力为均匀分布。锚定板与拉杆连接处的钢垫板,也可按中心有支点的单向受弯构件进行设计。
5) 挡墙整体稳定验算按折线裂面分析法进行计算,此分析法作了三个基本假定:
a. 下层锚定板前方土体的最不利滑动面通过墙面顶端;
b. 上层锚定板前方土体的最不利滑动面通过被分析锚定板以下的拉杆与墙面的交点;
c. 每一层锚定板边界后方土体的应力状态为朗金主动状态,稳定系数取1.8。
在桥台后一定距离设置整体的钢筋混凝土锚碇块,在锚碇块与桥台桩基间设置预应力钢筋(采用精轧螺纹钢,外加套管),并调整支座位置至原设计桩位中心线处以尽量减少偏心弯矩。桩间设置预应力钢筋垫梁,通过在垫梁端张拉一定量预应力而达到避免桩基进一步破坏及对已有位移进行适量纠偏的作用。
作挡土墙、桥台、港口护岸工程。锚定板结构是我国铁路部门首创 的一种新型支挡结构形式,它发展于70年代初期,1叮4年首次在太焦铁路上使用,目前在铁路部门已广泛应用,公路、水利、煤矿等部门也在立交桥台、边...
申请悬索桥‘索塔、锚碇、吊索防震器’三个外观专利提交什么资料?
申请外观设计专利的,申请文件应当包括:外观设计专利请求书、图片或者照片(要求保护色彩的,应当提交彩色图片或者照片)以及对该外观设计的简要说明。一、申请外观设计专利应当提交图片或者照片。图片或者照片应当...
锚垫板就是一个铸铁件 锚具的支持的东西啊 又名喇叭口
锚碇板挡墙是由面板、拉索、锚碇和填土组成。其工作原理是用拉索将面板与锚碇紧密连系,利用填土的侧压力将锚索绷紧,由面板、锚索、锚碇和填土共同组成稳定的挡土结构,以支挡锚碇后的土体,使其不遭破坏。
锚碇板挡墙实质上就是普通的重力式挡土墙,只是巧妙地用面板、锚索、锚碇和填土来替代石料或混凝土等圬工材料,从而大幅度降低了造价,并增大了挡土结构的安全度。在验算锚碇板挡墙时,只需将面板、锚索、锚碇和填土组成的实体,视作普通的重力式挡土墙,在主动土压力作用下,验算其抗滑移、抗倾覆及整体稳定性。如果稳定性验算未能过关时,只需将锚索的长度加长,便可达到稳定的目的。剩余的问题是面板、锚索、锚碇的验算。
大体积锚碇开挖施工探讨
62 科技咨询导报 Science and Technology Consulting Herald 2007 NO.28 Science and Technology Consulting Herald 工 业 技 术 科技咨询导报 镇宁至胜境关公路是贵州省境内“两纵 两横四联线公路主骨架的重要组成部分,北盘 江大桥是镇胜高速公路上横跨北盘江的一座 单跨简支钢桁加劲悬索桥, 悬索部分跨径 636m,桥梁全长1008m,是镇胜高速公路的控 制性工程。 1 工程概况 北盘江特大桥东锚碇为重力式锚碇,位于 北盘江大桥东岸陡壁一突起山丘上,分锚体、 锚室和鞍部三部分, 锚碇基坑长 52.7m,宽 41.0m,开挖最大深度31.4m,基底分为两台 阶,锚碇基坑开挖总方量为 6.6万 m3。本项 目作为镇胜高速公路上的控制性工程之一,较 其他项目晚开工约半年时间,存在任务重、工 期紧的特点,同时出
锚碇计算(结构吊装)
锚碇计算(结构吊装)
建造人行索桁桥,应根据地质地形条件选择合理的锚碇形式,并确定基底持力层位置。山区农村人行索桁桥主要采用两种简单、有效而且经济的锚碇形式:桩柱式锚碇和组合式锚碇。锚碇主要承受上拔力和水平力,因此需要验算锚桩抗拔承载力,桩身抗剪、抗拉承载力,锚桩水平承载力;必要时对桩身还需进行抗裂验算。要求承载力容许值大于锚桩所受荷载效应值。
人行索桁桥的桩柱式锚碇为挖孔灌注桩,适用硬质岩和软质岩地基;桩径不小于1.2m,嵌入微风化层深度不小于3.5m。桩柱式锚碇如下图所示。
组合式锚碇为重力式基础与桩基础的组合,适用于中实到密实的碎石土,中实到密实的中砂、砾砂、粗砂地基,桩径不小于1.2m,桩周与基础边缘不小于0.5m,基础埋置深度不小于3.5m。组合式锚碇如下图所示。
抗拔承载力取决于桩身与桩侧土层摩阻力和桩身自重两个主要因素。
按照《公路桥涵地基与基础设计规范》(JTG D63--2007),单桩轴向受拉承载力容许值为:
W——桩身自重;
V——背索对锚碇向上的最大竖向拉力。
对于桩柱式锚碇,抗拔承载力以桩侧摩阻力为主;对于组合式锚碇,桩身自重占主要成分。
依据《混凝土结构设计规范》(GB 50010一2010)第7.4.1条,桩身轴向拉力设计值表达式为:
桩身所受剪力由钢筋和混凝土共同承担,则:
参照《建筑桩基技术规范》(JGJ 94—2008),当桩的水平承载力由水平位移控制,且缺少单桩水平静载试验资料时,可按下式估算桩身配筋率不小于0.65%灌注桩单桩水平承载力特征值:
当缺少单桩水平静载试验资料时,可按照下列公式估算桩身配筋率小于0.65%的单桩水平承载力特征值:
式中,
若锚碇位置的地基承载力比较好,可建造重力式锚碇,一般采用明挖扩大基础。当位置在软土层时,可采用大型沉井或地下连续墙的形式。
重力式锚碇明挖基础施工除按一般的明挖基础施工外,还应符合以下要求:①基坑开挖时应采取沿等高线自上而下分层开挖,在坑外和坑底要分别设置排水沟和截水沟,防止地面水流入积留在坑内而引起塌方或基底土层破坏,原则上应采用机械开挖,开挖时应在基底标高以上预留150~300mm土层用人工清理,不得破坏坑底结构,如采用爆破方法施工,应使用如预裂爆破等小型爆破法,尽量避免对边坡造成破坏;②对于深大基坑边坡处理,应采取边开挖边支护措施保证边坡稳定,支护方法应根据地质情况选用。
重力式锚碇沉井基础施工按一般沉井施工的有关规定执行。重力式锚碇地下连续墙基础施工除按一般地下连续墙的有关规定执行外,另外还应符合以下要求:①采用“逆作法”进行基坑开挖时必须进行施工监测,监测内容包括环境监测、水工监测、地下连续墙体监测、土工监测及内衬监测;②基坑开挖前对地下连续墙基底基岩裂隙应进行压浆封闭,减少地下水向基坑渗透。
地下连续墙基础适用于锚碇下方持力层高程相差太大,不适宜于采用沉井基础的情况。其适用面广,可用于各种黏性土、沙土、冲积土及50 mm以下的沙砾层中,不受深度限制。虎门大桥西锚碇因持力层岩面严重不平,高差达10.5 m,若采用沉井基础下沉时会遇到极大的困难,无法控制工期和保证质量,后改为地下连续墙基础,获得成功。
重力式锚块混凝土的浇注应按大体积混凝土浇筑的注意事项进行,锚块与基础应形成整体。关键的问题是温度控制,施工需采取下列措施进行温度控制,防止混凝土开裂。
(1)采用低水化热品种的水泥对于普通硅酸盐水泥应经过水化热试验比较后方可使用。不宜采用初出炉水泥。
(2)降低水泥用量、减少水化热掺入质量符合要求的粉煤灰和缓凝型外掺剂,粉煤灰和矿粉用量一般分别为胶凝材料用量的30%左右,水泥用量为40%左右。混凝土可按60d的设计强度进行配合比设计。
(3)降低混凝土入仓温度 可对沙石料加遮盖,防止日照,采用冷却水作为混凝土的拌和水等。一般选择夜晚温度较低时段浇筑混凝土。
(4)在混凝土结构中布置冷却水管,混凝土终凝后开始通水冷却降温。设计好水管流量、管道分布密度和进水温度。混凝土初凝后开始通水冷却以减低混凝土内部温升速度及温度峰值。进出水温差控制在10 ℃左右,水温与混凝土内部温差不大于20℃。混凝土内部温度经过峰值开始降温时停止通水,降温速度不宜大于2℃/d。
(5)大体积混凝土应采用水平分层施工应视混凝土浇筑能力、配合比水化热计算及降温措施而定,混凝土层间间歇宜为4~7d。每层厚度一般可取1~1.5m。在浇筑后达到一定强度时,可高压冲洗清除表面的浮浆,随后用10cm深的清水蓄水养生。在混凝土浇筑前在上面覆盖15cm的水泥砂浆,以保证分层之间的一体化。如需要竖向分块施工,块与块之间应预留后浇湿接缝,槽缝宽度宜为1.5~2m,槽缝内宜浇筑微膨胀混凝土。每层混凝土浇筑完后应立即遮盖塑料薄膜减少混凝土表面水分挥发,当混凝土终凝时可掀开塑料薄膜在顶面蓄水养生。气温急剧下降时须注意保温,并应将混凝土内表温差控制在25℃以内。
低标号混凝土可用车送或吊罐方式浇筑,若使用输送泵,往往为了保证可泵性而加大坍落度,在配合比中加大水泥用量,这样既不经济又不利于水化热控制 。
隧道式锚碇在隧道开挖时除按现行《公路隧道施工技术规范》有关规定执行外,还应符合以下要求。
(1)在条件许可的情况下,宜在附近选取一地质相似的地方进行爆破监控试验,对爆破施工方案各参数(钻爆孔数、防震孑L数、爆破分段数和爆破间隔装药量、爆破结构布置、半孔率、超爆时差等)进行试验和修正,以正式确定爆破方案,指导施工。
(2)开掘施工时要尽最大可能减少对围岩的扰动,严格控制爆破。开挖岩石过程中不应采用大药量的爆破,应尽量保护岩石的整体性。
(3)应选择合理的循环开掘进尺,宜用多断面或分台阶开挖,不宜采用全断面开挖。
(4)锚洞支护施工应遵循强支护、快封闭的原则,支护紧跟开挖面,以缩短围岩应力松弛时间及开挖面的裸露风化时间,保持围岩的稳定。
(5)爆破实施过程中对周围建筑物要进行严密观察,对地表沉降量及洞室收敛量定期观测记录。
(6)施工衬砌工程时应保证防水层质量,在施工防水层前应对锚喷混凝土表面进行严格检查处理,保证初期支护基面没有钢筋、锚杆、凸出的管件等尖锐突出物,并用砂浆找平。对于向下倾斜的隧道锚如地下水较丰富应采取必要的引水措施将水引入集水沟内,在衬砌混凝土施工缝处沿隧道轴线方向预埋止水板。
隧道式锚碇混凝土施工应符合以下要求:①锚体混凝土必须与岩体结合良好,宜采用自密实型微膨胀混凝土,确保混凝土与拱顶基岩紧密黏结;②洞内应具备排水和通风条件。
岩锚施工应满足的要求包括以下几点:①岩锚孔宜采用破碎法施工,在成孔过程中注意对钻孔深度和孔空间轴线位置的检查和记录,达到设计深度后,用洁净高压水冲洗孔道并采取有效方法将钻渣掏出;②锚索下料时宜采用砂轮机切割,穿束时必须设置定位环,保证锚索在孔中位于对中位置,同时注意避免锚索扭转;③岩锚杆就位后应及时进行压浆。
锚碇型钢锚固体系应按下列规定进行施工:①所有钢构件的制作与安装均应按相关要求进行;②锚杆、锚梁制造时应严格按设计要求进行抛丸除锈、表面涂装和无破损探伤等工作。出厂前应对构件连接进行试拼,其中应包括锚杆拼装、锚杆与锚梁连接、锚支架及其连接系平面试装;③锚杆、锚梁制作及安装精度应符合图1的要求。
锚碇预应力锚固体系应按下列规定进行施工:①预应力张拉与压浆工艺,除需严格按照设计等的要求进行外,锚头要安装防护套,并注入保护性油脂;②加工件必须进行超声波和磁粉探伤检查;③预应力锚固系统施工精度应符合图2的要求。
辙叉垫板(frog plate)是指设置于辙叉轨件和岔枕之间,为叉心及翼轨提供可靠的联结条件,并将钢轨的轮载分布到岔枕面的各类垫板。如叉趾垫板、叉限垫板、大垫板等用以提高辙叉的整体强度和加强接头强度。