选择特殊符号
选择搜索类型
请输入搜索
米库姆转鼓又叫焦炭机械强度测定转鼓机,是用于测定焦炭机械强度(M40、M25、M10)、焦炭试样的专用设备。按量放入鼓内,测试时转鼓按要求不停地转动,使焦炭与鼓壁和焦炭之间相互产生撞击,磨擦作用,使焦炭沿裂纹破裂以及表面被磨损,达到测定抗碎强度和耐磨强度。
转鼓主要由机架、滚筒、减速系统、卸料系统、计数装置等组成。
机架由型钢焊接而成,主要起到支撑作用,所有部件均安装在机架上。
滚筒是该设备的主要部件,它由钢板卷制而成,通过两端支撑半轴、轴承、轴承座安放于支架上,形成一个自由回转的一个筒体。筒体上开有可以敞开、锁闭密封的料口,筒内焊有拨料钢板筋,焦炭放入滚筒内后转动时,焦炭随之滚动,在钢板筋的作用下,被抛下自碰破碎。达到预置数后,滚筒停止转动,物料从料口卸出,完成一个设定试验周期。
减速系统:由电机、联轴器、蜗轮减速机等组成,起到带动滚筒以合适的恒定转速运转。蜗轮减速机并有自锁功能。减速系统还配有手动调整装置,便于卸料和调整计数装置的感应开关。
卸料装置:有滚筒卸料口、活络支撑架、卸料板等组成。转鼓达到预置转数停止后,进入卸料工作。因蜗轮减速机有自锁功能,需人工搅动装在减速机输入轴上的摇把,使活络支撑架对准料口上的卡座,然后松动压紧螺栓,掀开料口盖板,进行卸料工作。
计数装置:主要起到预置转数、数字显示转数、自动停机的作用。
当固体燃料在试验滚筒中旋转时,测试出的固体燃料的粒度减小及磨蚀程度。
在神东补连塔煤矿斜井全断面岩石掘进机(TBM)掘进段不同埋深围岩进行了岩石成分分析和磨蚀性试验,采用线激光超高速轮廓扫描仪对磨蚀性试验的岩石划痕进行三维扫描分析,并基于磨蚀性试验结果,分析了岩石磨蚀指数CAI与TBM刀具磨损的关系。结果发现:CAI与等效石英含量相关性最强,等效石英含量越大,CAI越大,划痕深度变小,成层状细砂岩的裂纹延伸扩展最明显;钢针划过粉砂岩、中砂岩、细砂岩展现3种不同破坏方式,分别为细颗粒磨蚀、粗颗粒磨蚀、倾斜磨蚀;刀具磨损与岩石CAI值呈一定相关性,CAI值越大,钢针磨蚀越大,刀具磨损也越大,刀具磨损与钢针划过岩石的磨损破坏形式具有一致性。实际工程中可根据钢针磨损形式预测刀具磨损,改进刀刃形式,减少刀具消耗,带来经济效益。 2100433B
可以考虑套用设备基础二次浇筑砼(或砂浆)的子目,然后把砼(砂浆)主材换算为环氧树脂浆料
从网上搜个厂家 询问一下
通常情况下,主要设备有:起重机吊装设备(起重机、吊车等)、破碎设备(破碎炮、大锤等)、运输设备(卡车等)、装运设备(推土机、铲车等)、爆破设备、钢筋管线分离设备(电、气焊设备)等等。
设备能力指数Cmk分析表
1 14 2 15 3 16 4 17 5 18 6 19 7 20 8 21 9 22 10 23 11 24 12 25 13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 规格上限 零件名称 文件编号: 设备能力指数 Cmk分析表 设备编号 计算日期 规格下限 质量特性 规 格 值 核准统计 分析 客户图号 抽样数量 生 产 线 工序名称
期刊评价新指标——A指数与h指数的相关性分析
利用数学原理推导A指数,结合统计方法与其他指标进行相关性分析。结果表明,A指数是基于h指数的修正指数,与H指数具有很强的相关性。和其他指数相比,A指数与综合评价值相关性最高。在继承h指数优点的基础上,A指数更好地减少了载文量对期刊评价的影响,在科技期刊评价中更显科学性。
岩石的磨蚀作用,包含有两种不同的机理,一种是类似于锉刀锉金属的作用,称之擦蚀,其特征是被磨蚀物体的硬度小于磨蚀物体,而后者表面又必须是粗糙的,它在前者的表面上翘削下碎屑末。另一种作用是类似于砚台受墨的研磨,久而久之也要被磨蚀,称之磨损。对于钢制工具而言,除了含有石英颗粒的岩石以外,岩石的磨蚀作用主要是以磨损的形式进行的。对于硬质合金制的工具而言,更是以磨损为主了。不过实际上擦蚀和磨损种机理是难以截然区别开的,经常伴随出现,所以我们在中文上用术语“磨蚀性”统称之。
磨蚀过程是一个综合的作用,至少包括下列五种作用;
由于接触面并非绝对平整,真实的接触面只有外观面积的百分之一到万分之一。局部的真实接触压力很大,当它超过了弹性限度时便被压堆而磨损;
由于两物体紧密接触,若其相互间的分子间的引力胜过自身分子间的引力,那么两物体相对移动时,便把表面的分子层“粘”了下来。尤其当物体在结构上存在缺陷时,这种作用更易发生;
由于物体表面参差不齐,产生机械的啮合作用,相对移动时,便产生磨损。表面虽平整,但软硬不均,也将会产生啮合而磨损的作用;
啮合作用不大,相对位移时虽然不足以使其磨损,但在反复微小的撞击作用之下,表面便因疲劳而损坏;
由于局部凸起接触,摩擦时产生大量热能,使温度升高到塑性变形乃至熔化。
一般说来,上述作用3在工具磨蚀时是主要的作用,尤其是在擦蚀作用下更为重要,其他1、2、4三种作用在磨损作用下有着更多的意义。作用5,对于硬质合金工具的磨蚀作用有重要意义。
从史莱涅尔和巴隆对一系列岩石磨蚀性测定的结果,可得出下述岩石结构组成对钢质材料磨蚀性的一般关系。
岩石具有硬的矿物组成时,磨蚀性增大。
对于岩浆岩和矿物而言,磨蚀系数ω大体上与其组成的矿物微痕硬度成正比例。
由软硬不同的几种矿物组成的岩石,其磨蚀性比单一矿物组成的岩石为大。
结晶体的矿物比其非晶态的磨蚀性为大。
沉积岩的磨蚀性系数几乎和它的石英含量成正比例。按照史氏观点,对于砂岩来说,岩石的磨蚀性和其侵入硬度成反比。岩石的侵入硬度反映了岩石的坚固性,而不是岩石的颗粒硬度。但据另外一些研究者的意见,含石英量相等的岩石,坚固的磨蚀性要大。而含石英多的砂岩,坚固性可能小于含石英多的。
无论是砂岩或岩浆岩,颗粒越细磨蚀性越弱。这是因为细粒构造的岩石表面较平整,接触点的真实应力较小。同时,物体的赫芝硬度随着压头的曲率半径减小将直线地增大。因此其磨蚀性也就削弱了。
砂岩的颗粒大小及其胶结物的强度对其磨蚀性影响很大,对于钢制工具来说,岩石颗粒由石英或长石组成,对磨蚀性的影响退居第二位。常常是花岗砂岩或长石砂岩,只要其粒度及侵入硬度跟石英砂岩相当,其磨蚀性也就差不多。但是对硬质合金的磨蚀,石英颗粒和长石颗粒大概是会不一样的。
岩石的磨蚀性,在很大程度上还取决于摩擦面的粗糙程度。如在正长石、石英和黄玉的晶面(或解理面)上摩擦,巴氏磨蚀性指标a值各为27.3、21.3和19.0,即反比例于硬度;而在其自然断口上摩擦,相当的a值却各为31.1、35.4和46.2,即说明只有在粗糙面上的磨蚀性才和硬度成正比。据此,巴氏采取了自然断口作为测定其磨蚀性的标准条件。
从以上介绍可知,对于沉积岩,影响其磨蚀性的因素莫过于石英的含量、颗粒大小以及岩石的坚固性了。 2100433B
磨蚀是指风力、流水、波浪和冰川等所携碎屑物对基岩进行的机械磨损。亦即侵蚀或刻蚀辅之以对岩石的擦划(scratching)和冲蚀(scouring)。象用砂纸将岩石打磨过一样,给留下平滑、光溜的表面。磨损也表示碎屑物自身在搬运过程中的磨损,并因而变得越来越小。
磨蚀的第二种定义如下:
材料在腐蚀和磨耗的综合作用下所产生的破坏现象,也称磨耗腐蚀(erosioncorrosion)。磨耗是流体运动等机械作用的结果,流动的液体或气体不断冲恻材料表面,不仅直接磨耗材料,而且破坏材料表面的保护膜,使新鲜的材料表面不断与腐蚀性流体接触,而加速了腐蚀作用。当流体中含有固体粒子时磨蚀更为严重。在水力发电机的翼轮、船舶的推进器、水管弯曲处最为常见 。