选择特殊符号
选择搜索类型
请输入搜索
Ziegler-Nichol响应曲线法 ,是根据被控对象的阶跃响应曲线获取被控对象的模型式(1),根据模型的增益K,时间常数T以及纯滞后时间,再利用如下的经验公式(2)整定PID控制器参数。
公式(1):
公式(2):
一般来说由于Z-N整定的PID控制器超调较大。为此C.C.Hang提出改进的Z-N法[8],通过给定值加权和修正积分常数改善了系统的超调。这种方法被认为是Z-N法最成功的改进。
Ziegler-Nichols临界振荡法只对开环稳定对象适用。该方法首先对被控对象施加一个比例控制器,并且其增益很小,然后逐渐增大增益使系统出现稳定振荡·则此时临界振荡增益就是比例控制器的数值K,,振荡周期就是系统的振荡周期凡,然后根据公式(3)整定PID控制器参数。
公式(3):
类似的整定方法有Cohen-Coon响应曲线方法[9],该方法同Ziegler-Nichols响应曲线法操作相同,只是整定公式不同,其整定公式如式(4):
公式(4):
为评价控制性能的优劣,定义了多种积分性能指标,基于误差性能指标的参数整定方法 是以控制系统瞬时误差函数e(θ,t)的泛函积分评价Jn(θ)为最优控制指标,它是评价控制系统性能的一类标准,是系统动态特性的一种综合性能指标,一般以误差函数的积分形式表示。其中Jn(θ)的基本形式如式(5):
公式(5):
n=0,m=0IAE
n=0,m=2ISE
n=1,m=2ISTE
Jn(θ)可以是ISE,1AE,1STE,1TAE等,然后经过寻优,搜索出一组PID控制器参数Kc,Ti,Td,使Jn(θ)的取值为最小,此时的PID控制器参数为最优。
根据内模控制系统 , 与常规反馈控制系统间存在的对应关系,必要时对模型进行降阶简化处理,便可完成IMC-PID设计
图中Gp(s)为实际被控过程对象,Gm(s)为被控过程的数学模型,即内部模型,Q(s)为内模控制器,它等于Gm(s)的最小相位部分的逆模型。u为内模控制器的输出,r,y,d分别为控制系统的输入、输出和干扰信号。
为抑制模型误差对系统的影响,增强系统的鲁棒性,在控制器中加人一个低通滤波器F(s),一般F(s)取最简单形式如下:
公式(6):
式中阶次n取决于模型的阶次以使控制器可实现,r为时间常数。则内模控制等效的控制器为:
公式(7):
对于如式(1)表示的一阶加纯滞后过程,采用一阶Pade近似,得到如下模型:
公式(8):
将式(8)的最小相位部分代入式(7),可得到如下的PID控制器参数:
公式(9):
PID控制算法(ProportionalIntegral-Differential,比例一积分一微分)作为一种最常规,最经典的控制算法,经过了长期的实践检验。因为这种控制具有简单的结构,对模型误差具有鲁棒性及易于操作等优点,在实际应用中又较易于整定,所以它在工业过程控制中有着广泛的应用 。有调查表明,在炼油、化工、造纸等过程超过11,000个控制器中,有超过9796的控制器是PID类控制器 ,PID控制器在嵌入式系统中的应用也在增长[6]。
确定控制器参数 数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。 在选择数字PID参数之前,首先应该确定控制器结构。对允许有静差(或稳态误差)的系统,可以适当选择P或PD...
控制电动阀的开度来达到控制温度是可以的,我个人认为用比例电磁阀替代电动阀完全可以实现PID的控制。因为比例电磁阀有标准的模拟量输入信号和反馈信号而且具有PID调节功能。经过多年的工作经验,我个人认为P...
操作面板上就有,说明书上也有标注
基于自整定PID的温度控制器设计
为进一步提高工业生产过程中的温度控制精度,本文以工业电阻炉的温度控制器设计作为主要月那就内容,通过对系统的模糊化原理进行阐述和分析,进而对基于AT89C52单片机的温度电阻炉的模糊控制规则与模糊PID参数自整定方法展开了深入研究。
PID参数整定及其在中央空调中的应用
PID控制在中央空调领域得到了广泛应用。介绍了PID参数整定的几种方法,然后采用频域分析法,对这几种整定方法进行了分析。中央空调系统控制的复杂性已向传统的PID控制提出了挑战。
PID控制器的参数整定是控制系统设计的核心内容。它是根据被 控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是 依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主 要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应 曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需 要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡, 记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。
在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。
对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3
对于流量系统:P(%)40--100,I(分)0.1--1
对于压力系统:P(%)30--70,I(分)0.4--3
对于液位系统:P(%)20--80,I(分)1--5
参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢。微分时间应加长
理想曲线两个波,前高后低4比1
一看二调多分析,调节质量不会低
通过比较,模糊自整定PID控制器优势如下:
(1)模糊自整定PID控制器的参数调整较快。从系统响应上看,其稳态响应过程比常规PID控制器快。
(2)通过比较可知,模糊自整定PID控制器能有效地抑制随机干扰,能及时对PID控制器的参数进行在线调整,并以比常规PID控制器更小的误差和更快的速度重新进入稳态工作点,它的抗干扰特性要优于常规PID控制器。
模糊自整定PID控制器具有方法简便、调整灵活、实用性强等特点。仿真结果表明,模糊自整定PID控制器在线参数自整定能力强,对抑制干扰和噪声是有效的,能提高控制系统的品质,具有较强的自适应能力和较好的鲁棒性。2100433B
前言
第1章 绪论
第2章 PID控制器参数整定方法
第3章 分数阶PID控制器的参数整定
第4章 基于QDRNN的多变量PID控制器参数整定
第5章 数字PID控制器的FPGA实现
第6章 基于BP神经网络的PID控制器的FPGA实现
第7章 基于遗传算法的PID控制器的FPGA实现
第8章 基于粒子群算法的PID控制器的FPGA实现
附录
参考文献