选择特殊符号
选择搜索类型
请输入搜索
本项目主要研究图论中整数流、群连通度问题、欧拉子图的存在即网络容错性及相关问题,它包括图的处处非零的3-流问题、群连通度(Group connectivity)、 群着色问题及相关问题。 著名数学家Tutte教授(1954)提出的3-流猜想(Bondy和Murty的《Graph with applications》中未解决问题48):任何4-边连通图有非零3-流: 法国数学家 Jeager教授(1992) 把整数流问题推广到群连通度问题。而群着色问题作为群连通问题的对偶问题提出来的。 平面图的染色是与平面上的整数流等价。因此, 整数流问题、群连通问题和染色问题是图论研究的主流问题之一。 我们对对这些问题进行深入、系统的研究,取的一批重要成果。我们刻画了度条件与群连通性、 度系列与群连通性、禁用子图与群连通性、平面图的群着色。因为平面上整数流的问题和染色问题是等价的, 因此我们研究了平面图的着色以及强边着色等问题。我们还研究了线图的Hamilton性、度条件与欧拉连通子图的存在性, 因子的存在性和网络的容错性等问题。 2100433B
1954年,Tutte教授在研究四色问题时,引进了整数流的概念。四色定理等价于任何平面图有处处非零4流。后来人们发现整数流问题与圈覆盖等图论问题有紧密的关系。1992年, Jaeger教授将整数流的概念推广为群连通度(group connectivity),群着色 (group coloring)作为群连通度的对偶提出来。群连通度本身在研究整数流时,有应用价值。Thomassen在1986年提出任何4-边连通的线图是Hamilton的。任何超欧拉图的线图是Hamilton的。因此,超欧拉图对研究Thomassen这个猜想有应用价值。超欧拉图、Hamilton圈的研究 本身就是子图的存在性问题。本项目的主要内容是:研究群连通度及相关问题, 包括群着色、3-流问题等;研究子图的存在性, 包括线图Hamilton性、超欧拉图等;作为子图存在性的应用,研究算法的容错性。
这是梁的名称设计制图时被制作成CAD图块了,可在天正或CAD中把梁的名称分解;
建议与当地的广联达公司联系解决你的问题。
点击电缆导管或者电线导管,然后再点击CAD操作设置下的 电气系统图识别
施工图存在问题汇总
高层住宅施工图存在问题汇总 大家好: 近几天我对同学们的施工图进行了认真的批改。 发现图纸存在很 多不符合规范要求的问题, 和部分同学交流, 感到一方面由于时间比 较仓促,另一方面因为大家对图纸绘制深度缺乏准确的认识同时对施 工图绘制的深度理解不足。 现将大家存在的共性问题或典型问题进行小结如下: 一、制图板式的问题 现在大家交上来的作业出现五种以上不同的工程名称、图纸规 格、图标图角。现以一名同学的板式为样板进行统一(见附件) 1、封皮样式、字体统一。工程名称统一:高层住宅施工图设计 2、图角与图幅无关,全部图纸图角大小一致。 二、设计说明、室内装修表及门窗做法 1、设计说明中部分同学完全使用的电子版样图中的建设单位和 工程名称等文字,必须修改。建设位置统一为:详见总平面位置图 2、墙体构造的外墙做法与节点不符, 应为 200 厚砌块墙体加 80—100厚苯板(挤塑板)外保温(具体设计以
建筑施工图存在的问题及解决方法
实行施工图审查制度以来,对杜绝建筑工程的事故隐患起到了很好的作用。本文对施工图审查制度实施以来发现的建筑专业设计通病进行了分析、归纳,对存在的问题进行了剖析,介绍了解决问题的一些经验、方法。
连通分量:无向图 G的一个极大连通子图称为 G的一个连通分量(或连通分支)。连通图只有一个连通分量,即其自身;非连通的无向图有多个连通分量。
强连通图:有向图 G=(V,E) 中,若对于V中任意两个不同的顶点 x和 y,都存在从x到 y以及从 y到 x的路径,则称 G是强连通图。相应地有强连通分量的概念。强连通图只有一个强连通分量,即是其自身;非强连通的有向图有多个强连分量。
单向连通图:设G=<V,E>是有向图,如果u->v意味着图G至多包含一条从u到v的简单路径,则图G为单连通图。
弱连通图:将有向图的所有的有向边替换为无向边,所得到的图称为原图的基图。如果一个有向图的基图是连通图,则有向图是弱连通图。
初级通路:通路中所有的顶点互不相同。初级通路必为简单通路,但反之不真。
无向图G的一个极大连通子图称为G的一个连通分量(或连通分支)。连通图只有一个连通分量,即其自身;非连通的无向图有多个连通分量。
在无向图中, 若从顶点v1到顶点v2有路径, 则称顶点v1与v2是连通的。如果图中任意一对顶点都是连通的,则称此图是连通图。
强连通和弱连通的概念只在有向图中存在。
一个无向图G=(V,E) 是连通的,那么边的数目大于等于顶点的数目减一:|E|>=|V|-1,而反之不成立。
如果G=(V,E) 是有向图,那么它是强连通图的必要条件是边的数目大于等于顶点的数目:|E|>=|V|,而反之不成立。
没有回路的无向图是连通的当且仅当它是树,即等价于:|E|=|V|-1。
在有向图中, 若对于每一对顶点v1和v2, 都存在一条从v1到v2和从v2到v1的路径,则称此图是强连通图。
即有向图G=(V,E) 中,若对于V中任意两个不同的顶点x和y,都存在从x到y以及从y到x的路径,则称G是强连通图。相应地有强连通分量的概念。强连通图只有一个强连通分量,即是其自身;非强连通的有向图有多个强连分量。
如果有向图中,对于任意节点v1和v2,至少存在从v1到v2和从v2到v1的路径中的一条,则原图为单向连通图。
即设G=<V,E>是有向图,如果u->v意味着图G至多包含一条从u到v的简单路径,则图G为单连通图。
强连通图、连通图、单向连通图三者之间的关系是,强连通图必然是单向连通的,单向连通图必然是弱连通图。
将有向图的所有的有向边替换为无向边,所得到的图称为原图的基图。如果一个有向图的基图是连通图,则有向图是弱连通图。
通路中所有的顶点互不相同。初级通路必为简单通路,但反之不真。
有向图的结构问题是图论的一个重要的研究领域,而泛弧和点不相交圈的存在性是有向图结构问题的一个重要分支,它和图的因子理论及染色问题等有着非常密切的关系。本项目主要研究有向图的泛弧和点不相交圈的存在性,关于这个课题还有很多问题没有解决。首先,本项目研究强连通、圈连通等条件下有向图泛弧的存在性,深入讨论有向图中泛弧的数量,力求找到尽可能多的泛弧。其次,我们还研究有向图的另一种重要结构,即有向图中点不相交圈的存在性,试图解决或部分解决Bermond-Thomassen 猜想的相关问题。最后,我们考虑圈的长度,研究有向图中点不相交的具有指定长度的圈,力求寻找最好的度条件。本项目的研究涉及到组合数学,计算机网络,交通运输及生物信息学等学科,问题的解决对组合数学,图论,计算机网络及交通运输业等的发展都有重要的意义。