造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

弱连通图相关概念

2018/06/19417 作者:佚名
导读: 通分量 无向图G的一个极大连通子图称为G的一个连通分量(或连通分支)。连通图只有一个连通分量,即其自身;非连通的无向图有多个连通分量。 连通图 在无向图中, 若从顶点v1到顶点v2有路径, 则称顶点v1与v2是连通的。如果图中任意一对顶点都是连通的,则称此图是连通图。强连通和弱连通的概念只在有向图中存在。一个无向图G=(V,E) 是连通的,那么边的数目大于等于顶点的

通分量

无向图G的一个极大连通子图称为G的一个连通分量(或连通分支)。连通图只有一个连通分量,即其自身;非连通的无向图有多个连通分量。

连通图

在无向图中, 若从顶点v1到顶点v2有路径, 则称顶点v1与v2是连通的。如果图中任意一对顶点都是连通的,则称此图是连通图。

强连通和弱连通的概念只在有向图中存在。

一个无向图G=(V,E) 是连通的,那么边的数目大于等于顶点的数目减一:|E|>=|V|-1,而反之不成立。

如果G=(V,E) 是有向图,那么它是强连通图的必要条件是边的数目大于等于顶点的数目:|E|>=|V|,而反之不成立。

没有回路的无向图是连通的当且仅当它是树,即等价于:|E|=|V|-1。

强连通图

在有向图中, 若对于每一对顶点v1和v2, 都存在一条从v1到v2和从v2到v1的路径,则称此图是强连通图。

即有向图G=(V,E) 中,若对于V中任意两个不同的顶点xy,都存在从xy以及从yx的路径,则称G是强连通图。相应地有强连通分量的概念。强连通图只有一个强连通分量,即是其自身;非强连通的有向图有多个强连分量。

单向连通图

如果有向图中,对于任意节点v1和v2,至少存在从v1到v2和从v2到v1的路径中的一条,则原图为单向连通图。

即设G=<V,E>是有向图,如果u->v意味着图G至多包含一条从u到v的简单路径,则图G为单连通图。

强连通图、连通图、单向连通图三者之间的关系是,强连通图必然是单向连通的,单向连通图必然是弱连通图。

弱连通图

将有向图的所有的有向边替换为无向边,所得到的图称为原图的基图。如果一个有向图的基图是连通图,则有向图是弱连通图。

初级通路

通路中所有的顶点互不相同。初级通路必为简单通路,但反之不真。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读