选择特殊符号
选择搜索类型
请输入搜索
主对角线以下都是零的方阵称为上三角矩阵。上三角矩阵具有行列式为对角线元素相乘、上三角矩阵乘以系数后也是上三角矩阵、上三角矩阵间的加减法和乘法运算的结果仍是上三角矩阵等性质。
现在市场的价格战太离谱了,导致很多的商家都必须用低价来吸引客户,所以产品质量往往都得不到保障。力弘(LHLEEHAM)提供全系列会议视听系统矩阵切换控制器,包含产品有同轴矩阵系列AHD/TVI...
答案:在线性代数中规定主对角线就是从左上开始的那条对角线.也就是说,当在C语言程序中相等的时候,即从左上角到右下角而从左下角到右上角的那个叫矩阵次对角线
楼上恐怕还是不大了解,数字矩阵首先信号是数字信号,数字信号包括:SDI(标清)、HD-SDI(高清)这两种以前都是广播级信号,都是在广播电视应用的,但是现在随着电视会议的发展,已经出现高清电视会议系统...
矩阵函数和函数矩阵
矩阵函数求导 首先要区分两个概念:矩阵函数和函数矩阵 (1) 函数矩阵 ,简单地说就是多个一般函数的阵列, 包括单变量和多变量函数。 函数矩阵的求导和积分是作用在各个矩阵元素上,没有更多的规则。 单变量函数矩阵的微分与积分 考虑实变量 t 的实函数矩阵 ( )( ) ( )ij m nX t x t ×= ,所有分量函数 ( )ijx t 定义域相同。 定义函数矩阵的微分与积分 0 0 ( ) ( ) , ( ) ( ) . t t ij ijt t d d X t x t X d x d dx dx τ τ τ τ ? ? ? ??? ???= =? ??? ?? ?? ? ?? ?∫ ∫ 函数矩阵的微分有以下性质: (1) ( )( ) ( ) ( ) ( )d d dX t Y t X t Y t dt dt dt + = + ; (2) ( ) ( ) ( )( ) ( ) ( )
矩阵
第五章 矩 阵 §5.1 矩阵的运算 1.计算 421 421 421 963 642 321 ; 412 503 310 231 4102 2013 ; n n b b b aaa 2 1 21 ,,, ; n n bbb a a a ,, 21 2 1 ; 113 210 121 121 011 132 113 210 121 . 2.证明,两个矩阵 A 与 B 的乘积 AB 的第 i 行等于 A 的第 i 行右乘以 B, 第 j 列等于 B的第 j 列左乘以 A. 3.可以按下列步骤证明矩阵的乘法满足结合律: (i) 设 B=( ijb )是一个 n p矩阵.令 j = njj bjbb ,,2,1 是 B的第 j 列, j=1,2,⋯ ,p. 又 设 pxxx ,,, 21 是 任 意 一 个 p 1 矩 阵 . 证 明 : B = ppxxx 211 . (ii)设 A 是一个
以主对角线划分,三角矩阵有上三角矩阵和下三角矩阵两种。
①上三角矩阵
如图所示,它的上三角(不包括主对角线)的元素均为常数0。
②下三角矩阵
与上三角矩阵相反,它的主对角线下方均为常数0,如图所示。
在多数情况下,三角矩阵的常数c为零。1定义[a,b]=x1y1+x2y2+……xnyn其中a=(x1,x2,……xn)b=(y1,y2,……yn)记a为(a1,a2,……an)则b的列向量为(b1,b2,……bn)b1=a1/mola1bi=ai-[ai,b1]b1-[ai,b2]b2-……[ai,bi-1]bi-1第二种归纳证Ra1+……Ras=Rb1+……Rbs(1<=s<=n)s=1显然假设s=k成立则取a=a(k+1)+c1b1+……csbs(ci 均为实数)则可取到ci使得【a,bi】=0再把a除以a的模即得到b(s+1)基本就这样了
上上致力于专业化发展道路,始终如一地执行着丁山华董事长所确立的“精、专、特、外”的战略目标。
“精”就是所有产品做成精品;“专”就是走专业化生产道路,三大厂区形成特色鲜明的四大电缆产品生产基地:即低压、中压、超高压、特种电缆;“特”就是新型产品特色化,大力发展特种电缆;“外”就是大力推行外贸出口。
上上致力于成为中国电缆产业最具竞争力、最有影响力的品牌,领航民族电缆行业的复兴大业,成为中国电缆制造业的坚强脊梁。
沉淀上上文化,积聚企业精髓,一百年之后,上上更精彩。