选择特殊符号
选择搜索类型
请输入搜索
溶胶粒子带电,这些电荷的主要来源是从水溶液中选择性地吸附某种离子:吸附正离子胶粒带正电,吸附负离子带负电,但整个溶液是电中性的,故还应有等量的反离子存在。固粒表面吸附的离子和溶液中的反离子构成双电层。
反离子在溶液中受到两个方向相反的作用:
1.固粒表面被吸附的离子的引力,力图将它们拉向界面;
2.离子本身的热运动,使之离开界面而扩散到溶液中去,其结果使反离子在固粒表面外呈平衡分布:靠近界面处反离子浓度大些;随着与界面距离的增大,反离子由多到少,形成扩散分布。
MN代表粒子的平表面,设它吸附负离子,则电量相等的正离子扩散分布,就好象大气层中气体分子按高度分布的状态。直到界面负电荷电力所不及处,过剩离子浓度等于零。带电表面及这些反离子,就构成扩散双电层。双电层的厚度随溶液中离子浓度和电荷数而不同。
在两种不同物质的界面上,正负电荷分别排列成的面层。在溶液中,固体表面常因表面基团的解离或自溶液中选择性地吸附某种离子而带电。由于电中性的要求,带电表面附近的液体中必有与固体表面电荷数量相等但符号相反的多余的反离子。带电表面和反离子构成双电层。
在电极的金属-电解质的两相界面存在电势,同样将产生双电层,其总厚度一般约为0.2-20纳米。电极的金属相为良导体,过剩电荷集中在表面;电解质的电阻较大,过剩电荷只部分紧贴相界面,称紧密双层;余下部分呈分散态,称分散双层。电极反应的核心步骤-迁越步骤(即活化步骤)都需在紧密层中进行,影响电极反应的吸附过程也发生在双电层中,故双电层结构的研究对于电化学的理论和生产都有重要意义。
胶核表面拥有一层离子,成为电位离子,电位离子层通过静电作用,把溶液中电荷相反的离子吸引到胶核周围,被吸引的离子称为反离子,它们的电荷总量与电位离子的相等而符号相反。这样,在胶核周围介质的相间界面区域就形成所谓双电层。
热运动使液相中的离子趋于均匀分布,带电表面则排斥同号离子并将反离子吸引至表面附近,溶液中离子的分布情况由上述两种相对抗的作用的相对大小决定。根据O.斯特恩的观点,一部分反离子由于电性吸引或非电性的特性吸引作用(例如范德瓦耳斯力)而和表面紧密结合,构成吸附层(或称斯特恩层)。其余的离子则扩散地分布在溶液中,构成双电层的扩散层(或称古伊层)。由于带电表面的吸引作用,在扩散层中反离子的浓度远大于同号离子。离表面越远,过剩的反离子越少,直至在溶液内部反离子的浓度与同号离子相等。
如图,MN代表固体的表面,设它吸附负离子,则电量相等的正离子扩散分布,直到界面负电荷电力所不及处,即到CD处的电荷为0。在MN→AB层中的离子与固体的结合力强,不能随溶液流动而流动,称为吸附层,该层包括表面吸附(或解离)所带的离子(电位离子,约一个分子大小)及部分反离子,厚度为几个水分子大小。在AB-CD层中的离子能随溶液的流动而流动,称为扩散层,因而AB界面称为滑移面。扩散层中的反离子随着与表面距离的加大,浓度逐渐减少到0,流动性增加。吸附层与扩散层合称为扩散双电层。
层理是沉积物垂向上的不连续造成的,反应沉积过程的微小波动。层面反应的沉积环境变化要大一些。层面间的岩层可以有好多层理。二者的级别不同的沉积构造。
图纸设计的防水附加层和规则的中的附加层是一个意思的
层理是原生构造,节理是次生构造。两者理论上的区别可以参考相关书本上的东东,实际中就靠经验了,节理的延伸和填充应和层理不同,我个人还没由碰到过不能分辨的情况。如果两者的填充差不多,力学性质相差不大可以不...
由于电荷分离而造成的固液两相内部的电位差,称为表面电势,用Ψ0表示。若溶液中某离子的浓度直接影响固体的表面电势Ψ0,则该离子称为决定电势离子,例如AgI溶胶中的Ag 离子与I-离子。溶液中的其他离子则称为不相干离子。斯特恩层中吸附离子的电性中心构成斯特恩平面,它与溶液内部之间的电势差称为斯特恩电势,一般用Ψd表示。在斯特恩层中电势自Ψ0近似直线地变化至 Ψd。除了吸附的反离子之外,还有一部分溶剂(水)偶极子也与带电表面紧密结合,作为整体一起运动。因此在电动现象中固液两相发生相对运动时的滑动面是在斯特恩平面之外的溶液内某处。此滑动面与溶液内部的电位差称为电动电势或ζ电势。双电层中的电势变化如图所示。按以上模型,ζ电势应比Ψd略低,但只要溶液中电解质浓度不是很高,可以认为二者近似相等。
在扩散层中,电势随离表面距离的变化大致呈指数关系。对于平的带电表面,若Ψ0不很高,则扩散层中的电势随离表面的距离x的变化可用图中式子表示。
Ψ=Ψd▪e-Kx
式中K的倒数称为双电层厚度,与溶液内部各种离子浓度(单位体积中的离子数目)及价数Zi的关系可用图中式子表示。
溶胶粒子在电场下与溶液发生相对移动时,分界面不是在固液界面处,而是有一层液体牢固地附在固体表面,并随表面运动。按电泳算出的就是此滑动面上的电势,称电动电势或€-电势。
€-电势除受决定电势的离子浓度影响外,还与溶液中其它电解质的浓度有关。当电解质浓度增加时,扩散层被压缩、变薄;同时某些具有特异性吸附能力的离子加入后,还可使€-电势符号改变。 2100433B
基于双电层理论的高黏乳化沥青性能研究
为了研究乳化剂、稳定剂、改性剂、增黏剂等对乳化沥青性能的影响,用推荐的高黏乳化沥青配伍设计方案制备乳化沥青,成型复合板钻芯得到试样进行室内剪切和拉拔试验。结果表明,采用季铵盐型乳化剂1.5%+氯化铵0.4%+LD胶乳3%+高分子聚合物0.8%制备出的乳化沥青,Zeta电位值绝对值达到最大33mV,高黏乳化沥青颗粒表面电荷分子达到临界胶束浓度,体系稳定性最佳。在竖向荷载及剪切速率相同的条件下,高黏乳化沥青性能优于普通改性乳化沥青。通过工业CT扫描喷洒高黏乳化沥青前后空隙率面积沿深度方向的变化可测算出渗入深度为3.6mm。
桩顶加筋灰土垫层理论分析与工程设计探讨
目前,加筋垫层的工程实践超前于其理论研究,桩顶加筋灰土垫层设计方法受到普遍关注。以郑-西客运专线深厚湿陷性黄土地基处理为工程背景,建立了桩顶加筋灰土垫层理论模型,分析了桩顶垫层荷载特征,提出了灰土垫层设计极限状态理论。考虑不同桩径、不同桩间距、不同路基高度和不同格栅强度情况,对灰土垫层厚度等进行了参数影响性分析。建议高速客运专线路基桩顶垫层设计中宜采用双层、双向土工格栅结构形式,并优先选用延伸率小的筋材。
【学员问题】双电层是什么?
【解答】胶核表面拥有一层离子,成为电位离子,电位离子层通过静电作用,把溶液中电荷相反的离子吸引到胶核周围,被吸引的离子称为反离子,它们的电荷总量与电位离子的相等而符号相反。这样,在胶核周围介质的相间界面区域就形成所谓双电层。
以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。
双电层电容器的电容高达数千法拉2011年。
双电层电容器的性能正在改善,新的研究进展。