选择特殊符号
选择搜索类型
请输入搜索
申请日 |
2021.01.29 |
申请人 |
杭州凯诺恩新材料有限公司 |
地址 |
311406浙江省杭州市富阳区万市镇方里村方里78号 |
发明人 |
李一超; 陈晓波 |
Int. Cl. |
C09D5/10(2006.01)I; C09D163/00(2006.01)I |
本发明公开了一种氟改性纳米防锈颜料,防锈颜料由聚四氟乙烯、高分子纳米材料、超细防锈颜料和纳米氧化锌组成,其各组分的重量比为10-20:5-10:30-40:6-10,按上述原料配比将聚四氟乙烯经过220度高温融化成液体在搅拌罐内搅拌,保持温度在220度,再加入硅烷偶联剂,低速搅拌,持续搅拌10分钟后,再加入高分子纳米材料继续搅拌10分钟,再加超细防锈颜料和纳米氧化锌,高速搅拌,彻底把材料溶解,冷却成型,在由三辊机压成片状,先经过粉碎机打成粉状,在由高强度粉碎机粉碎成纳米粉状,检查粉体的粒径,粒径要≤15微米,本发明具有防腐性增强,对大气无污染,对身体无害,又能提供长期的防腐功效,是一种环保型多功能的防锈材料。
国内涂料厂家使用的防锈颜料分为有毒、无毒两大类,以铅、铬系为代表的防锈颜料具有优良的缓蚀钝化功效,但是对环境造成污染。现有的无毒防锈颜料制成的各种防锈漆,其防锈性能有的不如红丹防锈漆,虽然有的防锈性能...
一种用于喷墨CTP制版技术的纳米颜料墨水 [技术摘要] 本发明公开了一种用于喷墨CTP制版技术的纳米颜料墨水,包括下列成分:纳...
租售状态: 出售开 发 商: 北京天亚物业开发有限公司投 资 商: ----占地面积: 11800.00平方米总建筑面积: 100000.00平方米详细信息售 楼 处: 北京市朝阳区光华路嘉裹中心饭店...
颜料与涂料之防锈颜料
颜料与涂料之——防锈颜料 第一节 红丹 一、红丹的组成及性质 红丹又名铅丹、樟丹,化学名称为四氧化三铅,分子式为 Pb3O4,结构式为 Pb Pb Pb O O O O 公元 23 ~ 79 年,罗马博物馆学者在记述比连港仓库失火时,报道过在失火中损失了许多桶铅白,这些铅白受高温的作用 变成了铅丹,即红丹。 2PbCO3·Pb( OH ) 2 + 1/2O 2→ Pb3O4 + 2CO 2 + H 2O 红丹外观为橘红色粉末,相对密度为 8.6。制漆后具有较强的附着力和遮盖力,长期光晒产生晶格变化,由橘红色变为灰 暗色。另外,红丹不溶于水和醇,溶于过热的碱,在酸性条件下部分溶解生成水和盐,沉淀部分即为 PbO2。 Pb3O4 + 4NaOH → Na4PbO4 + 2Pb( OH ) 2 Pb3O4 + 4HAc → 2Pb( Ac ) 2 + 2H 2O + PbO
复合铁钛防锈颜料及其“无铅红丹”防锈涂料
介绍了复合铁钛粉的第二代产品WD -D型浅色复合铁钛粉的性能及特点 ,以及其防锈涂料的组成和性能
纳米改性变压器油作为一种新型的绝缘材料,给传统的油纸复合绝缘结构带来了新的突破。一方面它可以显著改善油纸绝缘结构的散热性能,有效地解决绝缘材料的热老化问题;另一方面,纳米颗粒的引入还可以提高变压器油的绝缘特性。 国内外的研究状况为基础,从交直流耐压、冲击特性、抗老化、抗水分以及纳米油一纸交互作用等方面对纳米改性油的性能进行总结,介绍适用于纳米改性油击穿特性解释的3种理论模型。然而纳米改性变压器油还是一个全新的领域,针对它的研究还比较少,不管是在理论解释还是在绝缘特性上都有许多问题需要深入探索,具体叙述如下:
1)纳米材料体系的选择。理论上讲,绝大部分固体材料都可以提高纳米流体的导热性能,例如金属材料、绝缘材料、半导体材料等。但是纳米颗粒的引入必须考虑到纳米油作为绝缘材料实际使用的这一要求,而不能仅仅追求散热能力的提高。对于纳米改性变压器油的评价标准将是电气耐压特性、抗老化特性、稳定性和散热性等多种因素的综合,所以改性纳米颗粒材料体系的筛选将是当前以及今后一个长期存在的问题。
2)纳米改性变压器油的稳定性是其作为绝缘
材料运用的必备条件。在纳米流体中,纳米粒子很容易聚集形成团聚体,在重力的作用下缓慢沉降,这样会使纳米流体性能逐步退化,甚至造成微管堵塞、热导率降低。克服颗粒团聚,保持流体稳定性的有效手段是对颗粒进行表面处理,一般为通过分散剂改善颗粒表面活性。但是利用化学试剂表面改性往往会破坏改性油的电气特性和老化特性,因此寻找合适的改性变压器油的制备工艺,保证改J陛油的稳定性与其他性能的平衡,将是纳米改性变压器油研究过程中的主要问题 。
3)国内外针对纳米改性变压器油开展的研究还比较少,而关于改性油独特性能的理论解释更仅仅处于开始阶段,很大程度上还依赖于固体聚合物中纳米改性的相关理论。在今后的研究中,除了关注不同材料体系和制备方法对纳米改性油传热、电气等方面性能的影响之外,纳米颗粒对变压器油的改性机理将是另一个研究重点。2100433B
由于其高散热性和独特的电气性能,正受到越来越广泛的关注。以近年来纳米改性变压器油的相关研究成果为基础,分析了纳米改性变压器油在导热、击穿、老化、抗水分影响以及改性油一纸相互作用等方面的特点,并介绍了常用的三种用于解释绝缘油介质中纳米颗粒改性机理的理论模型,最后提出了纳米改性变压器油领域后续研究需要关注的问题,即纳米颗粒材料体系的选择、高稳定性改性变压器油的制备工艺以及纳米颗粒对变压器油的改性机理。
随着电网系统的快速发展,电压等级和传输容量不断提升,这不仅使得电力设备的体积和重量持续增加,同时也降低了设备的安全可靠性。调查显示,20052010年间我国因输变电设备故障导致的电网停电事故占当年总事故的37%-48%,居故障起因第一位。油纸绝缘作为一种较为成熟的绝缘技术,在电力设备中受到广泛运用,但随着服役年限的增加,在电、磁、机械等多重物理场的作用下,油纸绝缘结构暴露出了越来越严重的综合老化问题,尤其是由材料发热引起的热老化 .
为了解决油纸绝缘结构的散热问题,1995年纳米微粒首次被添加到变压器油中形成纳米流体,以提高绝缘结构自身的散热能力。C.Choi等的研究表明在变压器油中添加体积分数为0.5%的A1N纳米颗粒,可将油流体的热导率提高8%,整体热效率提高20%。纳米改性变压器油是指在变压器油中添加纳米颗粒,并形成稳定的悬浮胶体,这些粒子的平均直径为几到几十纳米,比变压器油中常见微粒小2到3个数量级。纳米改性变压器油最开始是以纳米磁流体(magnetic nanofluids)作为研究对象,即添加Fe304等铁磁性纳米材料,但研究显示铁磁性纳米油流体的稳定性和击穿特性受外部磁场的影响较大,并不适用于变压器等油纸绝缘结构的电力设备。在后续的相关研究中,半导体材料和绝缘材料逐渐被作为改性纳米材料添加到变压器油中。同时,流体基液也由矿物变压器油发展到植物变压器油。国内外各项研究结果表明,通过纳米材料改性的变压器油在导热性、电气特性和抗老化等方面都具有较明显的提高。
《一种同步交联改性聚偏氟乙烯微孔膜的制备方法》的目的针对2012年技术的不足,提供了一种同步交联改性聚偏氟乙烯微孔膜的制备方法,以提高分离膜的抗污能力、分离效率以及延长使用寿命 。
为解决上述技术问题,《一种同步交联改性聚偏氟乙烯微孔膜的制备方法》所采用的技术方案包括步骤如下:
步骤(1)将聚偏氟乙烯溶解在极性非质子溶剂中,在75~125℃下搅拌5~72小时,制成成膜前驱体溶液;成膜前驱体溶液中聚偏氟乙烯的质量百分含量为10~30﹪;
所述的极性非质子溶剂为N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)、磷酸三乙酯(TEP)、磷酸三甲酯(TMP)、甲基吡咯烷酮(NMP)、二甲基亚砜(DMSO)中的一种;
步骤(2)保持搅拌温度和搅拌速度不变,在氮气保护下将活性溶液加入到成膜前驱体溶液中进行聚合反应,反应2~48小时后,停止氮气保护,使反应物暴露在空气中终止反应,保持反应温度不变静置18~36小时,脱泡后得到铸膜液;其中活性溶液与成膜前驱体溶液的质量比为0.02~0.3:1;
所述的活性溶液为引发剂、改性单体和极性非质子溶剂的混合液;其中引发剂、改性单体和磷酸三乙酯的质量比为1:130:50
所述的引发剂为偶氮二异丁腈(AIBN)、偶氮二异庚腈(ABVN)、过氧化二苯甲酰(BPO)中的一种;
所述的改性单体为乙烯基亲水单体与硅烷偶联剂的混合物;其中乙烯基亲水单体与硅烷偶联剂的质量比为(4:6)~(19:1);
所述的乙烯基亲水单体为N-乙烯基吡咯烷酮、甲基丙烯酸羟乙酯、甲基丙烯酸羟丁酯中、丙烯酸、甲基丙烯酸、丙酰胺中的一种或多种;当为多种时,比例为任意比;
所述的硅烷偶联剂为乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷中的一种;
步骤(3)将铸膜液通过成膜机加工成型,制成初生膜;
步骤(4)初生膜成型后30分钟内浸入到凝固浴中浸没1分钟~12小时固化成膜并完成一次交联,然后转移到pH值为3~12的水浴中,浸没2~96小时完成二次交联,空气中常温下自然晾干,得到亲水聚偏氟乙烯干膜;
所述的凝固浴为去离子水或质量百分含量为10~90﹪极性非质子溶剂的水溶液;
所述的凝固浴的温度为10~80℃;
所述的水浴的温度为40~80℃;
所述的水浴用醋酸和氨水调节pH;
作为优选,步骤(1)中搅拌温度为80~100℃,搅拌时间为24~60小时;
作为优选,步骤(2)中聚合反应时间为6~24小时;
作为优选,步骤(4)中初生膜在凝固浴中的浸没时间为1分钟~3小时,在水浴中的浸没时间为6~48小时;
作为优选,步骤(4)中水浴的pH值为5~10;
作为优选,步骤(4)中凝固浴的温度为25~50℃;
作为优选,步骤(4)中水浴的温度为40~60℃ 。
《一种同步交联改性聚偏氟乙烯微孔膜的制备方法》所具有的有益效果:
《一种同步交联改性聚偏氟乙烯微孔膜的制备方法》通过在PVDF铸膜液中进行亲水单体的聚合,直接在亲水聚合物分子中引入可交联点,后经热处理,亲水分子之间发生水解缩合形成交联结构,有效地提高了亲水成分在聚偏氟乙烯微孔膜中的稳定性。由《一种同步交联改性聚偏氟乙烯微孔膜的制备方法》方法制备的微孔膜具有出众稳定的亲水性,并且反应条件温和,制备方法简单,重复性好;该方法不受限于微孔膜的形式,无需额外加致孔剂便可得到高通量的分离膜,制备的微孔膜为强亲水性干膜 。