选择特殊符号
选择搜索类型
请输入搜索
1998年,经全国科学技术名词审定委员会审定发布。
《电气工程名词》第一版。 2100433B
通过调整电容的充放电时间,改变振荡频率,输出延时信号晶振产生反转的时基信号,运用计数器来控制时间
1.投标截止时间前五个工作日或之前的时间; 2.公布内容: (1)招标控制价总价 (2)分部分项合计价; (3)措施项目合计价; (4)规费计取基数(按专业)。 这是2012标准招标文件的规定。
路灯控制器的种类太多,不同厂家不同设置,自己看说明书吧。
多功能时间控制器设计
本文介绍通用可编程时间控制器的单片机实现,介绍其硬件及软件设计。
模糊自整定PID控制器由参数可调整PID控制器和模糊控制器两部分组成,其控制原理框图如图1所示。
图1
其设计思想是:先建立PID控制器的三个参数与偏差e和偏差变化率ec的模糊关系即模糊规则,然后以偏差e和偏差变化率ec作为输入量,通过模糊规则对PID参数进行在线修改以满足不同时刻偏差e和偏差变化率ec对PID参数自调整的要求在系统中,模糊控制器是设计的核心 。
模糊控制器如图2所示。模糊控制器的工作过程可分为3个过程:模糊化、模糊逻辑推理和精确化。
图2
(1)知识库
知识库包括模糊控制器参数库和模糊控制规则库。模糊控制规则建立在语言变量的基础上。语言变量取值为“大”、“中”、“小”等这样的模糊子集,各模糊子集以隶属函数表明基本论域上的精确值属于该模糊子集的程度。因此,为建立模糊控制规则,需要将基本论域上的精确值依据隶属函数归并到各模糊子集中,从而用语言变量值(大、中、小等)代替精确值。这个过程代表了人在控制过程中对观察到的变量和控制量的模糊划分。由于各变量取值范围各异,故首先将各基本论域分别以不同的对应关系,映射到一个标准化论域上。通常,对应关系取为量化因子。为便于处理,将标准论域等分离散化,然后对论域进行模糊划分,定义模糊子集,如NB、PZ、PS等。
同一个模糊控制规则库,对基本论域的模糊划分不同,控制效果也不同。具体来说,对应关系、标准论域、模糊子集数以及各模糊子集的隶属函数都对控制效果有很大影响。这3类参数与模糊控制规则具有同样的重要性,因此把它们归并为模糊控制器的参数库,与模糊控制规则库共同组成知识库。
(2)模糊化
将精确的输入量转化为模糊量F有两种方法:
a.将精确量转换为标准论域上的模糊单点集。
精确量x经对应关系G转换为标准论域x上的基本元素.
b.将精确量转换为标准论域上的模糊子集。
精确量经对应关系转换为标准论域上的基本元素,在该元素上具有最大隶属度的模糊子集,即为该精确量对应的模糊子集。
(3)模糊推理
最基本的模糊推理形式为:
前提1 IF A THEN B
前提2 IF A′
结论 THEN B′
其中,A、A′为论域U上的模糊子集,B、B′为论域V上的模糊子集。前提1称为模糊蕴涵关系,记为A→B。在实际应用中,一般先针对各条规则进行推理,然后将各个推理结果总合而得到最终推理结果。
(4)精确化
推理得到的模糊子集要转换为精确值,以得到最终控制量输出y。常用两种精确化方法:
a.最大隶属度法。在推理得到的模糊子集中,选取隶属度最大的标准论域元素的平均值作为精确化结果。
b.重心法。将推理得到的模糊子集的隶属函数与横坐标所围面积的重心所对应的标准论域元素作为精确化结果。在得到推理结果精确值之后,还应按对应关系,得到最终控制量输出y 。
比例调节作用:按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。
积分调节作用:使系统消除稳态误差,提高无误差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决于积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。
简单说来,PI控制器各校正环节的作用如下:
1.比例环节 即时成比例的反映控制系统的偏差信号,偏差一旦产生,控制器立即产生控制作用,以减少偏差。通常随着值的加大,闭环系统的超调量加大,系统响应速度加快,但是当增加到一定程度,系统会变得不稳定。
2.积分环节 主要用于消除静差,提高系统的无差度(型别)。 积分作用的强弱取决于积分常数,积分常数越大,积分作用越弱,反之越强。闭环系统的超调量越小,系统的响应速度变慢。
总的来说,在控制工程实践中,PI控制器主要是用来改善控制系统的稳态性能。
先介绍九种工况和对应的九个控制作用。
工况一:在相平面上偏差为正且偏差变化率为零所包含区域,对应系统单位阶跃响应曲线的起始段。
该工况对应的控制作用K3+ ,影响系统性能指标"延迟时间"。
工况二:在相平面上偏差为正且偏差变化率为负所包含区域,对应系统单位阶跃响应曲线的上升区段。
该工况对应的控制作用K2+ ,影响系统性能指标"上升时间"。
工况三:在相平面上偏差为零且偏差变化率为负所包含区域,对应系统单位阶跃响应曲线系统运行在设定值附近,正在系统允许偏差正限和系统允许偏差负限的区段中。
该工况对应的控制作用K1- ,此时系统运行在设定值附近而要克服上升惯性。
工况四:在相平面上偏差为负且偏差变化率为负所包含区域,对应系统单位阶跃响应曲线穿越系统允许偏差负限的上升区段。
该工况对应的控制作用K4- ,影响系统性能指标"正超调量"。
工况五:在相平面上偏差为负且偏差变化率为零所包含区域,对应系统单位阶跃响应曲线正超调峰值区段。
该工况对应的控制作用K3- ,影响系统性能指标"最大正超调量"。
工况六:在相平面上偏差为负且偏差变化率为正所包含区域,对应系统单位阶跃响应曲线正超调下降区段。
该工况对应的控制作用K2- ,影响系统下降趋势与速度。
工况七:在相平面上偏差为零且偏差变化率为正所包含区域,对应系统单位阶跃响应曲线运行在设定值附近,正在系统允许偏差负限和系统允许偏差正限的区段中。
该工况对应的控制作用K1+ ,此时系统运行在设定值附近而要克服下降惯性。
工况八:在相平面上偏差为正且偏差变化率为正所包含区域,对应系统单位阶跃响应曲线负超调区段。
该工况对应的控制作用K4+ ,影响系统性能指标"负超调量"。
工况九:在相平面上偏差为零且偏差变化率为零所包含区域,对应系统单位阶跃响应曲线终值区段。
该工况对应的控制作用K0 ,影响终值大小。