造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

飞秒脉冲激光简介

2018/06/19120 作者:佚名
导读: 50 多年来光刻技术一直占据微纳米加工技术的统治地位. 传统的光刻技术通常为单光子平面曝光,要想获得三维结构需要将三维结构分割成许多二维结构, 将光束按照二维图形进行扫描, 光束焦点经过的地方产生作用, 可形成相应的二维结构, 用相同方法制备第二层结构, 最终得到需要制作的三维结构.由于普通光刻技术加工分辨率受到经典光学衍射极限的限制, 为了得到更高的分辨率, 光刻技术使用的光源波长从红外发

50 多年来光刻技术一直占据微纳米加工技术的统治地位. 传统的光刻技术通常为单光子平面曝光,要想获得三维结构需要将三维结构分割成许多二维结构, 将光束按照二维图形进行扫描, 光束焦点经过的地方产生作用, 可形成相应的二维结构, 用相同方法制备第二层结构, 最终得到需要制作的三维结构.由于普通光刻技术加工分辨率受到经典光学衍射极限的限制, 为了得到更高的分辨率, 光刻技术使用的光源波长从红外发展到深紫外, 加工方法从普通的激光刻蚀, 发展到 X 射线刻蚀、电子束刻蚀、离子束刻蚀、纳米图形转印等. 这些加工技术通过平面工艺、 探针工艺或模型工艺可以制备二维平面结构或准三维结构. 近年来, 多光束干涉被用来制备较大面积的周期性的二维及三维结构. 理论计算表明,只要适当选择光束数量、入射角方向及相位等条件,所有的 14 种布拉伐格子的周期性晶格结构都可以由多光束干涉实现, 但是对于进行纳米尺度任意复杂三维结构的加工, 单光子平面曝光及多光束干涉都无能为力. 飞秒脉冲激光双光子微纳加工技术是集超快激光技术、显微技术、超高精度定位技术、三维图形 CAD 制作技术及光化学材料技术于一体的新型超微细加工技术, 具有简单、低成本、高分辨率、真三维等特点 .

近年来, 作为最新的激光加工技术之一的飞秒脉冲激光多光子微纳加工技术已成为国际上研究的热点.该技术利用多光子效应和激光与物质作用的阈值效应, 成功地实现了纳米尺度的激光直写加工分辨率, 可望在功能性微纳器件制备等纳米技术领域发挥重要作用, 具有广阔的应用前景. 在 2001 年日本科学家利用飞秒脉冲激光双光子聚合技术首次突破衍射极限获得 120 nm的加工分辨率后, 最近我国科学家实现了 15 nm 线宽的纳米尺度加工分辨率. 在利用多光束并行加工技术进行快速、大批量微纳结构加工的同时, 最新发展的多光束组合技术实现了多部件组合加工、一次成型, 解决了微尺度零部件组装难题, 为微纳尺度器件及微机电系统的开发提供了具有实用化前景的加工方法与途径. 利用飞秒脉冲激光双光子微纳加工技术的高精度、良好的空间分辨率和真三维加工能力的特点, 各国科学家制备出了各种微尺度光子学器件及微机电系统, 充分展示了该技术的应用前景. 随着对飞秒脉冲激光与物质相互作用机理、加工技术及相关材料技术的深入研究, 飞秒脉冲微纳加工技术必将获得快速发展, 并在先进纳米制造领域获得新的突破 。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读