目前 ,供 igbt 使用的驱动电路形式多种多样 ,各自的功能也不尽相同。从综合的观点看 ,还没有一种十全十美的电路。 从电路隔离方式看,igbt驱动器可分成两大类,一类采用光电耦合器,另一类采用脉冲变压器,两者均可实现信号的传输及电路的隔离。 下面以日本富士公司的 exb841 驱动器为例 ,简单说明光电耦合驱动器的工作原理(见图) 。图中 + 20v驱动电源通过r1 和v5 分为+15v及 + 5v两部分。当来自控制电路的控制脉冲进入光电耦合器v1 后 ,放大器使v3 导通 ,gbt栅极即得到一个 +15v 驱动信号并导通。当控制信号消失后 ,v4 导通 ,此时 igbt 即得到一个 - 5v 的栅源电压并截止。igbt在导通期间过流时 ,会脱离饱和状态 ,此时 , uds升高。 驱动器内的保护电路通过 v6 检测到这一状态后 ,一方面在 10μs 内逐步降低栅压 ,使 igbt进入软关断状态 ,另一方面通过光耦 v2 向控制电路发出过流信号。 光电耦合驱动器的最大特点是双侧都是有源的 ,由它提供的正向脉冲及负向封锁脉冲的宽度可以不受限制 ,而且可以较容易地通过检测 igbt通态集电极电压实现各种情况下的过流及短路保护 ,并对外送出过流信号。目前国内外都趋向于把这种驱动器做成厚膜电路的形式 ,因此具有使用较方便 ,一致性及稳定性较好的优点。其不足之处是需要较多的工作电源。 例如 ,全桥式开关电源一般需要四个工作电源 ,从而增加了电路的复杂性。驱动器中的光电耦合器尽管速度较高 ,但对脉冲信号仍会有 1μs左右的滞后时间 ,不适应某些要求较高的场合。 光电耦合器的输入输出间耐压一般为交流2500v ,这对某些场合是不够的。例如 ,许多逆变焊机的输出直接反馈到控制电路 ,而国家的有关标准却规定焊机输入输出之间应能承受交流 电压 从而给电路的设计增加了困4000v ,难。另外 一旦 烧坏 驱动器通常也随之, igbt ,烧毁 从而增加了维修的复杂性及费用。 ,