造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

浅谈海上风电场海底电缆的监测与维护

2018/09/06111 作者:佚名
导读:随着化石能源储存量的不断减少,全球环境的不断恶化,风电、光伏太阳能等清洁能源已成为未来能源开发的重要领域。风电包含陆上风电和海上风电,海上风电具有风速稳定、利用小时高的特点,目前已成为风电发展的重要领域,特别是风电发展较早的欧洲国家,已把风

随着化石能源储存量的不断减少,全球环境的不断恶化,风电、光伏太阳能等清洁能源已成为未来能源开发的重要领域。风电包含陆上风电和海上风电,海上风电具有风速稳定、利用小时高的特点,目前已成为风电发展的重要领域,特别是风电发展较早的欧洲国家,已把风电开发的重点转向了海上风电。到2013年底,全球海上风电装机容量695万千瓦,主要集中在欧洲,装机容量656万千瓦,占全球海上风电装机容量的90%以上,其中英国368万千瓦,占53%。其次丹麦127万千瓦,比利时57万千瓦、德国52万千瓦。为引导海上风电发展,2010年欧盟提出了到2020年海上风电达到4000万千瓦和2030年达到1.5亿千瓦的发展目标。我国具有较好的海上风能资源。初步估计,海上风电开发潜力约5亿千瓦时。

 海底电缆作为海上风电场电能输送通道,其安全可靠运行对海上风电场系统的安全运行至关重要。而海缆工作的环境极其复杂并存在不可预见性的特点,尤其是存在船只抛锚,损坏海缆的风险性大。为确保海缆的安全运行,对海缆的在线监测,极其重要,也是海上风电场面临的重要性课题。

海缆在海上风电场的设置 

目前,我国海上风电场升高电压通常采用二级升压方式(少数采用三级),即风力发电机组输出电压690V经箱变升压至35kV后,分别通过35kV集电海底电缆汇流至110kV或220kV升压站,最终通过110kV或220kV线路接入电网。

一般来说,应根据海上风场容量、接入电网的电压等级和综合经济性规划海上风电场风能传输方式,既可采用二级升压方式也可采用三级升压方式。如果风电场较小(100MW以内)且离岸较近(不超过15km),可选用35kV海底光电复合电缆直接把电能输送到岸上升压站。若海上风电场容量较大且离陆地较远,考虑到35kV电缆传输容量、电压降、功率因数等问题,大多采用设立海上升压站(或海岛升压站)的方式,岸上升压站可根据实际情况确定是否设立。海缆的电压等级可根据各国各地区不同的电网形式进行选择,如欧洲国家选用20kV或30kV中压海底电缆汇集风场电能至岸上或海上升压站,我国主要采用35kV海底电缆。

海底电缆监测技术 

由于海底电缆深埋海底,其运行状态及故障的监测尤为重要。一旦出现故障,其探测和修复往往将耗费大量的人力、财力和时间,甚至超过新敷设一根电缆的投入。如果保护层进水,水很快会沿着护套、绝缘和线芯流动,扩大故障范围,甚至造成整条电缆报废。因此必须尽快修复海底电缆的故障。近几年,海底电缆监测普遍采用绝缘电阻法和示波器法,可迅速测出海底电缆是否受损以及故障点距某一端的距离。绝缘电阻法是比较简单明了的判断方法,其根据电缆绝缘情况即可找出故障相。示波器法采用电缆故障测距仪,读取故障点的波形及其位置,可直接确定故障点的位置。如果电缆较长或者示波器示意不太准确,可从电缆两端分别测试,再根据电缆的总长度合理判断故障点位置。随着科技的不断发展,针对海底电缆的监测,提出了采用基于 BOTDR 技术的分布式光纤传感系统监测电缆所受外力变化和监测电缆内部温度变化的技术,以及应用局部放电检测技术监测电缆绝缘破损后的放电现象。

研究发现,海底电缆护套中的感应电流与电缆护套绝缘状态的关系不密切,无论护套绝缘是否发生异常,其感应电流基本保持不变;护套电容电流则与电缆护套绝缘关系密切,而且这种关系呈现出单一的函数对应关系。因此,可以从电缆两端测得的电容电流的大小分析计算出电缆护套故障的相别和位置,进而实现对海底电缆外绝缘情况的监测 。 

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读