造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

单控制器与多控制器自适应动态规划(英文版)图书目录

2022/07/15150 作者:佚名
导读:Contents 1 Introduction 1 1.1 Optimal Control 1 1.1.1 Continuous-Time LQR 1 1.1.2 Discrete-Time LQR 2 1.2 Adaptive Dynamic Programming 3 1.3 Review of Matrix Algebra 5 References 6 2 Neural-Network-Ba

Contents

1 Introduction 1

1.1 Optimal Control 1

1.1.1 Continuous-Time LQR 1

1.1.2 Discrete-Time LQR 2

1.2 Adaptive Dynamic Programming 3

1.3 Review of Matrix Algebra 5

References 6

2 Neural-Network-BasedApproach for Finite-TimeOptimal Control 7

2.1 Introduction 7

2.2 Problem Formulation and Motivation 9

2.3 The Data-Based Identifier 9

2.4 Derivation of the Iterative ADP Algorithm with Convergence Analysis 11

2.5 Neural Network Implementation of theIterative Control Algorithm 17

2.6 Simulation Study 18

2.7 Conclusion 20

References 22

3 Nearly Finite-HorizonOptimalControlfor Nonafiine Time-Delay Nonlinear Systems 25

3.1 Introduction 25

3.2 Problem Statement 26

3.3 The Iteration ADP Algorithm and ItsConvergence 30

3.3.1 The Novel ADP Iteration Algorithm 30

3.3.2 Convergence Analysis of the Improved Iteration Algorithm 33

3.3.3 Neural Network Implementation of the Iteration ADP Algorithm 38

3.4 Simulation Study 40

3.5 Conclusion 48

References 48

4 Multi-objective Optimal Control for Time-Delay Systems 49

4.1 Introduction 49

4.2 Problem Formulation 50

4.3 Derivation of the ADP Algorithm for Time-Delay Systems 51

4.4 Neural Network Implementation for the Multi-objective Optimal Control Problem of Time-Delay Systems 54

4.5 Simulation Study 55

4.6 Conclusion 61

References 62

5 Multiple Actor-Critic Optimal Control via ADP 63

5.1 Introduction 63

5.2 Problem Statement 65

5.3 SIANN Architecture-Based Classification 66

5.4 Optimal Control Based on ADP 69

5.4.1 Model Neural Network 70

5.4.2 Critic Network and Action Network 74

5.5 Simulation Study 82

5.6 Conclusion 91

References 91

6 Optimal Control for a Class of Complex-Valued Nonlinear Systems 95

6.1 Introduction 95

6.2 Motivations and Preliminaries 96

6.3 ADP-Based Optimal Control Design 99

6.3.1 Critic Network 99

6.3.2 Action Network. 101

6.3.3 Design of the Compensation Controller 102

6.3.4 Stability Analysis 103

6.4 Simulation Study 107

6.5 Conclusion. 110

References 110

7 Off-Policy Neuro-Optimal Control for Unknown Complex-Valued Nonlinear Systems 113

7.1 Introduction 113

7.2 Problem Statement 114

7.3 Off-Policy Optimal Control Method 115

7.3.1 Convergence Analysis of Off-Policy PI Algorithm 117

7.3.2 Implementation Method of Off-Policy Iteration Algorithm 119

7.3.3 Implementation Process 122

7.4 Simulation Study 122

7.5 Conclusion 125

References 125

8 Approximation-Error-ADP-Based Optimal Tracking Control for Chaotic Systems 127

8.1 Introduction 127

8.2 Problem Formulation and Preliminaries 128

8.3 Optimal Tracking Control Scheme Basedon Approximation-Error ADP Algorithm 130

8.3.1 Description of Approximation-Error ADP Algorithm 130

8.3.2 Convergence Analysis of the Iterative ADP Algorithm 132

8.4 Simulation Study 136

8.5 Conclusion 144

References 144

9 Off-Policy Actor-Critic Structure for Optimal Controlof Unknown Systems with Disturbances 147

9.1 Introduction 147

9.2 Problem Statement 148

9.3 Off-Policy Actor-Critic Integral Reinforcement Learning 151

9.3.1 On-Policy IRL for Nonzero Disturbance 151

9.3.2 Off-Policy IRL for Nonzero Disturbance 152

9.3.3 NN Approximation for Actor-Critic Structure 154

9.4 Disturbance Compensation Redesign andStability Analysis 157

9.4.1 Disturbance Compensation Off-Policy Controller Design 157

9.4.2 Stability Analysis 158

9.5 Simulation Study 161

9.6 Conclusion 163

References 163

10 An Iterative ADP Method to Solve for a Class of Nonlinear Zero-Sum DifferentialGames 165

10.1 Introduction 165

10.2 Preliminaries and Assumptions 166

10.3 Iterative Approximate Dynamic Programming Method for ZS Differential Games 169

10.3.1 Derivation of the Iterative ADP Method 169

10.3.2 The Procedure of theMethod 174

10.3.3 The Properties of theIterativeADP Method 176

10.4 Neural Network Implementation 190

10.4.1 The Model Network 191

10.4.2 The Critic Network 192

10.4.3 The Action Network 193

10.5 Simulation Study 195

10.6 Conclusion 204

References 204

11 Neural-Network-Based Synchronous Iteration Learning Method for Multi-player Zero-Sum Games 207

11.1 Introduction 207

11.2 Motivations and Preliminaries 208

11.3 Synchronous Solution of Multi-playerZSGames 213

11.3.1 Derivation of Off-Policy Algorithm 213

11.3.2 Implementation Method for Off-Policy Algorithm 214

11.3.3 Stability Analysis 218

11.4 Simulation Study 219

11.5 Conclusion 224

References 224

12 Off-Policy Integral Reinforcement Learning Method for Multi-player Non-Zero-Sum Games 227

12.1 Introduction 227

12.2 Problem Statement 228

12.3 Multi-player Learning PI SolutionforNZSGames 229

12.4 Off-Policy Integral ReinforcementLearningMethod 234

12.4.1 Derivation of Off-Policy Algorithm 234

12.4.2 Implementation Method for Off-Policy Algorith

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读