如图1-8所示,《一种钢包自动加揭盖系统》所提供的技术方案是,一种钢包自动加揭盖系统,包括钢包盖1和钢包加揭盖机构2,所述钢包盖1上设置有耳轴,所述耳轴布置位置在所述钢包盖1本体向外延伸的方向上,在加揭盖过程中,所述耳轴与所述钢包加揭盖机构2接触。所述耳轴布置在所述钢包盖1的侧表面上。所述的耳轴包括第一耳轴5、第二耳轴6、第三耳轴7、第四耳轴8,所述第一耳轴5与第三耳轴7布置在同侧,所述第二耳轴6与第四耳轴8布置在同侧;所述第一耳轴5与第二耳轴6对称布置,所述第三耳轴7与第四耳轴8对称布置。所述第一耳轴5与第二耳轴6处于同一水平面上,所述第三耳轴7与第四耳轴8处于同一水平面上。所述钢包加揭盖机构2包括侧面揭盖斜滑板9和提升油缸10,所述提升油缸10包括提升拉杆11,所述侧面揭盖斜滑板9一端连接提升拉杆11,另一端与所述钢包加揭盖机构2的框架活动连接。所述钢包加揭盖机构2包括两块所述侧面揭盖斜滑板9,所述侧面揭盖斜滑板9相对于耳轴相对应布置。所述两块侧面揭盖斜滑板9之间的最大距离小于两耳轴轴向上的最大距离。所述侧面揭盖斜滑板9包括接触部16、缓冲部15和外端部14,在所述外端部14靠近缓冲部15处向上凸起形成圆滑过渡的顶点。所述侧面揭盖斜滑板9包括若干段所述的接触部16、缓冲部15和外端部14;所述提升拉杆11在所述侧面揭盖斜滑板9的顶点附近连接。所述钢包自动加揭盖系统还包括钢包3,所述钢包3布置在钢包车4上,所述钢包3外壳设有向外延伸的铰座12,所述铰座12与钢包盖1上的铰钩13配合连接。
《一种钢包自动加揭盖系统》所要解决的问题,现有(截至2010年6月28日)的一些钢包3加盖操作远不能达到炼钢厂所期望的节能降耗的效果,从钢包3耐火衬及包内钢水中散失的大部分热量仍未得到有效得控制。《一种钢包自动加揭盖系统》所提供的技术方案在结合国内金属冶炼工艺特别是钢铁公司的实际工况,开发出完全适合国内钢厂使用的铰链斜滑板9式全程自动钢包3加盖系统。而我国多数炼钢厂在精炼炉精炼后,钢包车4要穿过精炼炉到吊装工位,由于精炼炉或冶炼炉的有效空间小,高度不够高,此时,加了盖的钢包车就无法穿过精炼炉(因为钢包盖增加了钢包车的有效高度),自动加盖系统经常会出现干涉,无法正常工作的情况,如果时间过长,严重时将造成整包钢水的浪费,《一种钢包自动加揭盖系统》所提供的铰链侧面斜滑板9式钢包3全程自动加盖系统非常好的解决了这些问题,并填补了我国在金属冶炼领域中的空白。
高温熔体包(钢包3)的工艺流程
高温熔体包(钢包3)流程的路线是:
高温熔体包(钢包3)修砌区---烘干---存放区---转炉(或电炉)
(1)转炉(或电炉)---连铸平台---倒渣(或倒余钢)---高温熔体包(钢包3)倾翻台
(2)转炉(或电炉)---LF精炼炉---连铸平台---倒渣(或倒余钢)---钢包3倾翻台
(3)转炉(或电炉)---RH精炼炉---连铸平台---倒渣(或倒余钢)---高温熔体包(钢包3)倾翻台
(4)转炉(或电炉)---LF精炼炉---RH精炼炉---连铸平台---倒渣(或倒余钢)---高温熔体包(钢包3)倾翻台
(5)转炉(或电炉)---RH精炼炉---LF精炼炉---连铸平台---倒渣(或倒余钢)---高温熔体包(钢包3)倾翻台
高温熔体包(钢包3)加盖的工艺流程
高温熔体包(钢包3)盖修砌区---烘干---存放架---烘烤---吊运到高温熔体包(钢包3)---转炉(或电炉)
(1)转炉(或电炉)吊装工位---揭盖---受钢---加盖---连铸平台---倒渣(或倒余钢)---高温熔体包(钢包3)倾翻台---钢盖吊运维修---存放架
(2)转炉(或电炉)吊装工位---揭盖---受钢---加盖---揭盖(进LF精炼炉)---加盖(出LF精炼炉)---连铸平台---倒渣(或倒余钢)---高温熔体包(钢包3)倾翻台---钢盖吊运维修---存放架
(3)转炉(或电炉)吊装工位---揭盖---受钢---加盖---揭盖(进RH精炼炉)---加盖(出RH精炼炉)---连铸平台---倒渣(或倒余钢)---高温熔体包(钢包3)倾翻台---钢盖吊运维修---存放架
(4)转炉(或电炉)吊装工位---揭盖---受钢---加盖---揭盖(进LF精炼炉)---加盖(出LF精炼炉)---揭盖(进RH精炼炉)---加盖(出RH精炼炉)---连铸平台---倒渣(或倒余钢)---高温熔体包(钢包3)倾翻台---钢盖吊运维修---存放架
(5)转炉(或电炉)吊装工位---揭盖---受钢---加盖---揭盖(进RH精炼炉)---加盖(出RH精炼炉)---揭盖(进LF精炼炉)---加盖(出LF精炼炉)---连铸平台---倒渣(或倒余钢)---高温熔体包(钢包3)倾翻台---钢盖吊运维修---存放架
铰链侧面斜滑板9式高温熔体包(钢包3)加盖系统的原理
钢包3加盖系统的组成
钢包3加盖系统由:钢包盖1;焊在钢包3上的铰座12;包盖上的铰钩13;加盖机构;钢包盖1烘烤器;倾翻台挂放包盖挡板;钢包盖1存放架;液压泵站;控制电路;等组成
高温熔体包(钢包3)加盖原理
(1)铰链侧面斜滑板9式钢包3全程自动加盖机构
钢包3揭盖
带钢包盖1的钢包车4从布置在冶炼炉或精炼炉前的钢包加揭盖机构2通过时,钢包加揭盖机构2的斜插齿式斜滑板9插入钢包盖1侧面的四个耳轴。随着钢包车4继续前进,钢包铰座12轴通过钢包铰钩13推着钢包盖1,在斜插齿式斜滑板9斜面上行进,钢包盖1被提升,同时脱离钢包3并停留在加揭盖机构上。钢水在冶炼炉或精炼炉中精炼完成后,再开到钢包加揭盖机构2,在穿过钢包3加揭盖时,钢包盖1被钢包铰座12轴拉下,完成钢包3加盖的动作。然后,钢包加揭盖机构2中的斜插齿式斜滑板9被提升油缸10提升,使钢包车4通过加揭盖机构,再穿过冶炼炉或精炼炉到钢包3吊装工位,完成钢水精炼的工序。
钢包盖1需要维修时,通过行车吊住钢包盖1上的耳轴从钢包3上取下。铰链侧面斜滑板9式钢包3全程自动加盖机构使用场合及配置
铰链侧面斜滑板9式钢包3全程自动加盖机构适用所有冶炼过程中高温容器的加盖工艺。在炼钢、炼铜等行业都大有用武之地。
钢包加揭盖机构2在炼钢工艺中的配置:在每个转炉、电炉、LF精炼炉、RH精炼炉(包括双工位的)倒余钢工位等吊装工位都各装一台揭盖机构;根据钢包3在线循环使用量,增添新砌钢包盖1烘烤器;钢包盖1存放架;钢包3倾翻台挡板(必要时还要油缸推动式活动挡板)。
全程自动钢包3加盖技术所带来的直接效益
(1)减少钢包3内钢水的冷却,钢水出炉温度可以降低,降低能源和物料消耗。
(2)一旦钢包3进入在线循环使用,炉次之间的钢包3在线烘烤器即可免除。
(3)钢包3在线周转周期即可加快,减少钢包3在线的使用数量。以一个150吨钢包3为例,减少一个在线钢包3,一年可节约272万元人民币。
(4)减少钢水在钢包3、中间包及结晶器内的温度波动,提高浇注质量。
(5)免除连铸过程中对中间包的辅助加热。
(6)金属收得率更加稳定,减少钢包3内的废钢的产生。
(7)提高钢包3滑动水口的自由开浇率
(8)由于保温效果好,内衬结壳少,减少对钢包3的边沿及渣线的清理需求,在清理时降低了对钢包3内衬的机械损伤。
(9)降低劳动强度和提高人员安全保护。
全程自动钢包3加盖技术所带来的经济效益
(1)在线循环使用的钢包3数量减少,假如是150吨的钢包3,在线数量每减少一只,一年给钢厂带来272万元的人民币的效益。
(2)由于钢水出炉温度的降低,钢水氧化程度就变小,减少了脱氧剂的消耗。
(3)减小了转炉及钢包3的耐火衬的侵蚀,转炉及钢包3使用炉次量增加,延长了使用寿命。原来钢包3使用炉次为14-16次,现在是30-32次。
(4)整个炼钢工艺操作的时间周期被缩短,提高了炼钢的效率。
(5)潜在的炼钢车间生产率获得极大地提高。
(6)炼钢车间劳动力的需求量被减少。经测算,减少量在10%-16%之间。
(7)钢包3服务区的操作空间可以减少到原来的25%--30%。
(8)根据炼钢厂的设备条件、操作环境和管理水平的不同,采用全程自动钢包3加盖系统,可节约费用为:23-68元/每吨。
(9)炼钢过程中的废料大大减少,如添加剂、反应剂等副产品和耐火废品等。
(10)由于钢包3已被加盖,热损减少,可降低出钢温度。就可以使用含硅量低的钢水,含硅量低可以增加高炉的生产率并降低焦比。
(11)降低了出钢温度,就可以降低铁水和废钢之间的混合比。出钢温度每降低一度,该混合比就减少0.054%。
(12)降低出钢温度可增加金属收得率,因为降低了被氧化成FeO的铁的量,这些被氧化FeO最后进入钢渣里。根据测试,出钢温度每降低一度,金属收得率就增加0.02%。
(13)降低了铝消耗,每吨钢水每降低一度,铝消耗降低0.045Kg。
(14)低温出钢过程可以降低转炉中钢渣的流动性,从而减少下渣量。
(15)由于钢包3加盖的保温,使得钢包3耐材使用寿命的延长,并可取消覆盖剂。
(16)钢包3底部渣饼结壳厚度降为最低,这就改善了透气砖和滑动水口的性能。
(17)钢包3加盖后,钢包3边沿渣壳厚度变为最小,这将增加产量0.25%--0.5%。
(18)连铸时适合的过热度能减少铝夹杂物堵塞水口的现象,由此可改善连铸的性能和质量。保证连铸的工艺程序通过在炼钢厂的实测,以上的节约效果的经济数据可得出:全程钢包自动加揭盖系统给钢包3加盖后,可使出钢温度降低6℃--15℃,从而降低了工序成本和工序能耗,以出钢温度降低8℃,采用钢包3加盖装置后年产每吨钢给钢厂可带来的直接经济效益为19.12元/吨/年。若年产100万吨钢,则直接经济效益为:1912万元/年。
以上仅是《一种钢包自动加揭盖系统》的最佳实施例,任何在《一种钢包自动加揭盖系统》构思的基础上的变形设计,都属于《一种钢包自动加揭盖系统》的保护范围。