造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

三维微电极叠层拟合制备及其质量控制与成形磨削结题摘要

2022/07/15116 作者:佚名
导读:本项目提出采用线切割结合真空压力热扩散焊制备三维微电极并将其应用于微细电火花加工,以此减小电极损耗并提高三维微结构的加工效率。通过线切割对铜箔进行切割从而获得多层二维微结构,通过真空压力热扩散焊将多层二维微结构进行连接从而叠加拟合出三维微电极。与通过具有简单截面形状的微细电极进行逐层扫描放电加工从而获得三维微结构的加工方式相比,三维微电极只需进行上下往返式加工便可获得三维微结构,加工效率高且电极损

本项目提出采用线切割结合真空压力热扩散焊制备三维微电极并将其应用于微细电火花加工,以此减小电极损耗并提高三维微结构的加工效率。通过线切割对铜箔进行切割从而获得多层二维微结构,通过真空压力热扩散焊将多层二维微结构进行连接从而叠加拟合出三维微电极。与通过具有简单截面形状的微细电极进行逐层扫描放电加工从而获得三维微结构的加工方式相比,三维微电极只需进行上下往返式加工便可获得三维微结构,加工效率高且电极损耗低。本项目的主要研究成果如下: (1)在脉冲宽度10μs,脉冲间隔40μs,线切割电流0.42A,电压80V,热扩散温度850℃,热扩散时间10h,压力100N的工艺参数下,使用100μm厚的铜箔制备了表面质量良好的三维微电极。在电压80V,脉冲频率0.2MHZ,脉冲宽度400ns,脉冲间隔4600ns的作用下,使用三维微电极对304不锈钢材料进行微细电火花加工,获得了表面粗糙度Ra=0.48μm的三维微结构。微细电火花加工获得的三维微结构与设计模型基本相符。 (2)为了研究三维微电极的损耗,将三维微电极进行离散化处理。离散后的三维微电极由α类电极、β类电极和γ类电极组成。通过对这三类电极的损耗进行研究发现:α类电极、β类电极和γ类电极的损耗与其所经历的加工深度呈线性关系;α类电极的拟合斜率k=-0.24071,损耗最大;β类电极的拟合斜率k=-0.21524,损耗次之;γ类电极的拟合斜率k=-0.19767,损耗最小。 (3)台阶效应是三维微电极的原理误差,本项目通过电火花成形磨削对三维微电极的台阶效应进行磨削。通过实验发现:台阶效应对三维微电极加工结果的影响与成形磨削次数正相关,成形磨削次数越多,台阶效应对加工结果的影响越小。 (4)为了消除微型腔表面的接缝放电痕,本项目制备Cu/Sn/Cu三维复合微电极。使用锡膜厚度为1μm的铜箔(50μm厚)为原材料,在900℃热扩散焊温度,15h热扩散焊时间和100N压力的作用下,制备了具有良好放电加工性能的三维复合微电极。将三维复合微电极用于微细电火花加工,微型腔表面的接缝放电痕已基本消失。 2100433B

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读