概念模型是地下水数值模拟不确定性的重要来源。贝叶斯模型平均(Bayesian Model Averaging, BMA)是当前处理概念模型不确定性的主要方法。然而,BMA方法在实际应用过程中存在以下几方面的问题:1) 如何建立完备的备择概念模型组;2) 如何确定概念模型的先验概率;3) 概念模型综合似然值的计算。针对这些问题,首先,本项目拟从场地水文地质信息的解析入手,采用排列组合的方式构建备择概念模型组。其次,利用改进的分类树分析方法对备择概念模型进行分组归类,进行先验概率的组内稀释,采用交叉验证的方法识别最优的先验概率组合。最后,利用MCMC(Markov Chain Monte Carlo)方法估计概念模型的综合似然值。因此,本研究拟通过改进及完善BMA方法的理论框架,提升BMA综合预测的效率与可靠性,从而为地下水数值模拟概念模型的不确定性分析提供理论支撑。