随着电力系统规模的扩大和日益增加的安全稳定性要求,如何快速、实时地计算OPF成为一个十分紧迫的课题。现有的OPF算法的计算速度均难以满足大型网络的实时性需要。并行计算可以提高现有计算机的计算能力,提高计算速度。最优潮流并行算法是利用待求解问题的并行性通过多个处理器协作完成问题的求解。并行计算的硬件可以是专门的并行计算机,也可以是分布式网络计算环境。
在无限点算法的基础上,使用了Newton - Kylov并行化算法求解非线性方程组,在IEEES, 30, 118系统进行计算,算法在共享内存计算机、分布内存超级计算机和网络集群计算环境下进行。结果表明所使用的方法在各种环境下均具有良好的加速性能。
将遗传算法并行化通过将目标函数的计算分派给各个处理器来实现并行,遗传的操作在主机中进行。试验计算得到的主机效率在80%以上。
定性研究了粗粒度模型并行遗传算法中迁移策略参数对算法性能的影响,这些参数包括:子种群数目、迁移率、迁移规模、迁移选择策略和通信方式等。得到的结论是1}A在高迁移率下容易找到最优解;子种群数目越大,找到最优解的评估次数就越少;在同步迁移和异步迁移下,ESA在不同迁移周期下的算法性能基本相似,采用随机选择的迁移选择策略好于最佳选择的迁移选择策略 。
对分解协调法这类并行最优潮流算法进行了比较研究。分解协调法是一类将网络分块进行计算的方法,属于粗颗粒的空间并行算法。分解协调法有辅助问题法APP (Auxiliary Problan Principle)、预测校正极大乘子法PCPM (Corrector Proxinal Multiplier Method)、交替方向法ADM ( Alte mating Direction Method)三大类。