实施例1:
用500千克真空炉炼钢,浇铸形成铸坯的化学成分如表1所示。将上述铸坯加热至1200℃、保温2小时进行热轧,终轧温度为1000℃,轧后层流冷却,缓冷到710℃卷取,形成厚度2.5毫米的带钢。上述带钢经酸洗后冷轧到0.30毫米,进行脱碳退火:850℃、140秒脱碳退火;最后MgO涂层,并在1200℃进行25h的高温退火。测量磁性能,结果也列于表1。
编号 |
C(%) |
Si(%) |
Mn(%) |
S(%) |
P(%) |
Cu(%) |
Alsol.(%) |
N(%) |
Sn(%) |
P17/50(W/千克) |
B8(T) |
发明例1 |
0.06 |
3.15 |
0.02 |
0.004 |
0.020 |
0.20 |
0.010 |
0.0050 |
0.25 |
1.12 |
1.921 |
发明例2 |
0.05 |
3.00 |
0.16 |
0.002 |
0.015 |
0.10 |
0.012 |
0.0025 |
0.55 |
1.32 |
1.895 |
比较例1 |
0.07 |
3.35 |
0.03 |
0.005 |
0.020 |
0.10 |
0.0040 |
0.0015 |
0.001 |
1.31 |
1.862 |
比较例2 |
0.07 |
3.20 |
0.10 |
0.003 |
0.015 |
0.08 |
0.0220 |
0.0090 |
0.005 |
1.19 |
1.873 |
实施例2:
用500千克真空炉炼钢,浇铸成铸坯的化学成分(Wt%)为C=0.081,Si=3.8,Als=0.012,N=0.008,Mn=0.05,Sn=0.35,Cu=0.13,P=0.01,S=0.0020。对此成分铸坯加热到1200℃并保温120分钟,然后分别进行如下操作:
比较例A1:6道次粗轧至40毫米,道次之间等待10秒,6道次热精轧工艺将其轧至2.5毫米,热轧终轧温度980℃;
发明例A2:3道次粗轧中间坯厚度为50毫米,粗轧最终温度1040℃,道次之间等待15秒,6道次热精轧工艺将其轧至2.5毫米,热轧终轧温度1000℃;
发明例A3:3道次粗轧厚度变化为70毫米,粗轧最终温度1050℃,道次之间等待15秒,3道次热精轧工艺将其轧至2.5毫米,热轧终轧温度1020℃。然后喷水冷却到850℃,缓冷到720℃进行卷取。
再进行下面工艺直到最终成品:冷轧到0.30毫米;850℃、40秒脱碳退火;最后MgO涂层,并在1200℃进行25h的高温退火。磁性能结果如表2所示。
表2热轧工艺结果
实施例3:
用500千克真空炉炼钢,浇铸成铸坯的的化学成分(Wt%)为C=0.081,Si=3.8,Als=0.012,N=0.008,Mn=0.05,Sn=0.35,Cu=0.13,P=0.01,S=0.0020。对此成分铸坯加热到1200℃并保温120分钟。三道次粗轧厚度变化70毫米,粗轧最终温度1050℃,3道次热精轧工艺将其轧至2.5毫米,热轧终轧温度1020℃。然后如下操作:
B1:直接喷水冷却到500℃以下卷取;
B2:先喷水冷却到850℃,缓冷到700℃进行卷取。
再进行下面工艺直到最终成品:冷轧到0.30毫米;850℃、140秒脱碳退火;最后MgO涂层,并在1200℃进行25h的高温退火,结果如表3所示。
表3热轧卷取工艺结果
通常取向硅钢生产方法都是采用板坯高温加热的方式,板坯加热温度高达1400℃,使有利夹杂充分固溶,该生产方法的缺点在于,加热温度过高,加热时间过长,直接影响可生产性。 2007年7月之前技术尚无好的办法解决这个问题。
《一种高磁感取向硅钢及其生产方法》的方法有效地解决了上述问题,采用新型的抑制剂Sn和Cu,可降低板坯加热温度,并仍然可有效地控制钢板的一次再结晶组织,对获得稳定、完善的二次再结晶成品组织非常有利。使得《一种高磁感取向硅钢及其生产方法》的方法与其它方法相比有很大的优越性。
通过调整热轧卷取工艺,可在2007年7月之前成分体系下成功的省略常化工艺,而不影响最终的磁性能。此工艺简单易行,在设备条件满足的情况下,可提高取向硅钢生产效率,并可提高的磁性,因而具有良好的推广应用前景。