选择特殊符号
选择搜索类型
请输入搜索
1、干涉法
干涉法是利用光波干涉原理来测量表面粗糙度。
2、针描法
针描法是利用触针直接在被测表面上轻轻划过,从而测出表面粗糙度的Ra值。
3、比较法
比较法是车间常用的方法。将被测表面对照粗糙度样板,用肉眼判断或借助于放大镜、比较显微镜比较;也可用手摸,指甲划动的感觉来判断被加工表面的粗糙度。此法一般用于粗糙度参数较大的近似评定。
4、光切法
光切法是利用"光切原理"来测量表面粗糙度。
测量工件表面粗糙度时,将传感器放在工件被测表面上,由仪器内部的驱动机构带动传感器沿被测表面做等速滑行,传感器通过内置的锐利触针感受被测表面的粗糙度,此时工件被测表面的粗糙度引起触针产生位移,该位移使传感器电感线圈的电感量发生变化,从而在相敏整流器的输出端产生与被测表面粗糙度成比例的模拟信号,该信号经过放大及电平转换之后进入数据采集系统,DSP芯片将采集的数据进行数字滤波和参数计算,测量结果在液晶显示器上读出,也可在打印机上输出,还可以与PC机进行通讯。
传统表面粗糙度测量仪的改进方案
为了克服传统表面粗糙度测量仪的不足,应该采用计算机系统对其进行改进。例如,英国兰克精密机械有限公司制造的"泰吕塞夫(TALYSURF)"10型和中国哈尔滨量具刃具厂制造的2205型表面粗糙度测量仪就采用了计算机系统,使其性能较之传统表面粗糙度测量仪有极大的提高。其基本原理如图4所示,从相敏整流输出的模拟信号,经过放大及电平转换之后进入数据采集系统,计算机自动地将其采集的数据进行数字滤波和计算,得到
测量结果,测量结果及轮廓图形在显示器显示或打印输出。图4 改进后的表面粗糙度测量仪工作原理框图要采用计算机系统对传统的表面粗糙度测量仪进行改进,就要编制相应的计算机软件,最好采用比较直观的菜单形式。可以按如图5所示的菜单使用流程图编制软件:
图5 菜单使用流程框图改进后的表面粗糙度测量仪的功能及使用效果
由于采用计算机系统,将模拟信号转换为数字信号进行灵活的处理,显著地提高了系统的可靠性,所以既大大增加了测量参数的数量,又提高了测量精度。例如:哈尔滨量具刃具厂制造的2205型表面粗糙度测量仪的测量参数多达二十六个,测量范围为0.001~50μm,另一方面,若在表面粗糙度测量仪测量实验的教学过程中引入改进后的表面粗糙度测量仪,就实验的直观教学功能而言,也很有意义。改进后的电动输廓仪,通过计算机软件与硬件的结合(尤其是软件)大大加强了实验过程的直观性,这体现在以下几个方面:
(1)整个实验过程非常直观地通过软件的各级菜单进行控制。操作简单、一目了然。(2)输入与显示同步,即在测量进行过程的同时,触针在被测表面上滑行的轨迹动态地显示在计算机屏幕上。(3)测量结果及相关图形能非常直观地、准确地输出在显示器、打印机或绘图仪上。很显然,以上这些直观的教 学效果是其它传统的表面粗糙度测量实验方法所不具备的。它在得到正确的测量结果的同时,还充分运用了直观教学的原理,帮助学生加深对表面粗糙度的概念及其各种参数的直观理解。结语
(1)传统的表面粗糙度测量仪由传感器、驱动器、指零表、记录器和工作台等主要部件组成,从输入到输出全过程均为模拟信号。而在传统的表面粗糙度测量仪的基础上,采用计算机系统对其进行改进后,通过模-数转换将模拟量转换为数字量送入计算机进行处理,使得仪器在测量参数的数量、测量精度、测量方式的灵活性、测量结果输出的直观性等方面有了极大的提高。(2)从前面的分析知,整个改进方案并不复杂,因此对于仍广泛使用的传统的表面粗糙度测量仪的改进具有一定的意义。(3)随着电子技术的进步,某些型号的表面粗糙度测量仪还可将表面粗糙度的凹凸不平作三维处理,测量时在相互平行的多个截面上进行,通过模-数变换器,将模拟量转换为数字量,送入计算机进行数据处理,记录其三维放大图形,并求出等高线图形,从而更加合理的评定被测面的表面粗糙度。粗糙度∶以前一般叫表面光洁度,是用来评定工件表面质量的专业术语,最早一般用对比样板来评定工件表面粗糙度,从▲1到▲14一共分为14个等级,随着科技的发展使用者对工件表面质量要求也越来越高,原来的检测手段已经不能满足我们的需求,这也就加快了表面粗糙度仪的诞生。粗糙度仪是检测工件表面粗糙度的数字化电子仪器,由于准确度高、稳定性好、便于操作等优点迅速普及开来。
1、高精度电感传感器
2、段码液晶显示器,具有背光功能
3、人机对话,界面直观、操作极其简单
4、采用DSP芯片进行控制和数据处理,速度快,功耗低
5、内置锂离子充电电池及控制电路,容量高、无记忆效应,充电时 间短,连续工作时间长,大于20小时
6、机电一体化设计,体积小,重量轻,使用方便快捷
7、带有测值存储及存储数据查询功能
8、内置标准RS232接口可连接时代TA220s打印机,可打印全部参数
9、具有自动关机、多种提示说明信息
10、可选配曲面传感器、小孔传感器、深槽传感器、测量平台、接长杆等附件菜单操作方式
粗糙度仪的应用领域有:一、机械加工制造业,主要是金属加工制造。粗糙度仪最初的产生就是为了检测机械加工零件表面粗糙度而生的。尤其是触针式粗糙度测量仪比较适用于质地比较坚硬的金属表面的检测。如:汽车零配件加工制造业、机械零部件加工制造业等等。这些加工制造行业只要涉及到工件表面质量的,对于粗糙度仪的检测应用是必不可少的。上海全爱丰精密量仪有限公司是一家专业代理日本MITUTOYO三丰量具和量仪以及日本SK量规等的专业公司。二、非金属加工制造业,随着科技的进步与发展,越来越多的新型材料应用到加工工艺上,如陶瓷、塑料、聚乙烯,等等,现有些轴承就是用特殊陶瓷材料加工制作的,还有泵阀等是利用聚乙烯材料加工制成的。这些材料质地坚硬,某些应用可以替代金属材料制作工件,在生产加工过程中也需要检测其表面粗糙度。三、随着粗糙度仪的技术和功能不断加强和完善,以及深入的推广和应用,越来越多的行业被发现会需求粗糙度的检测,除机械加工制造外,电力、通讯、电子、,如交换机上联轴器、集成电路半导体等生产加工过程中也需粗糙度的评定,甚至人们生活中使用的文具、餐具、人的牙齿表面都要用到表面粗糙度的检验。
这个还要看你要用什么样的了,我们厂用的英国进口的1万多,牌子是英示
北京哪儿有表面粗糙度仪,我要做实验材料的表面粗糙度。求好心人指点,做的话,价格多少?谢谢
植物材料????一般说粗糙度都是金属或者是化合物,这个你得需要先了解,一般单位有的会帮你测量,这个很少有收费的,帮个忙的事情,希望能帮到你!!!
利用针尖曲率半径为 2微米左右的金刚石触针沿被测表面缓慢滑行,金刚石触针的上下位移量由电学式长度传感器转换为电信号,经放大、滤波、计算后由显示仪表指示出表面粗糙度数值,也可用记录器记录被测截面轮廓曲线...
粗糙度仪又叫表面粗糙度仪、表面光洁度仪、表面粗糙度检测仪、粗糙度测量仪、粗糙度计、粗糙度测试仪等多种名称。它具有测量精度高、测量范围宽、操作简便、便于携带、工作稳定等特点,可以广泛应用于各种金属与非金属的加工表面的检测,该仪器是传感器主机一体化的袖珍式仪器,具有手持式特点,更适宜在生产现场使用。外形采用拉铝模具设计,坚固耐用,抗电磁干扰能力显著,符合当今设计新趋势。
国外先研发生产后来才引进国内,市场上粗糙度仪品牌主要有:英国泰勒粗糙度仪、德国马尔粗糙度仪、德国霍梅尔表面粗糙度仪、日本三丰粗糙度仪、东京精密粗糙度、瑞士泰萨粗糙度仪、英国易高粗糙度这些都是国外生产厂商品牌;国内生产厂家品牌主要有:粗糙度仪从测量原理上主要分为两大类:接触式和非接触式,接触式粗糙度仪主要是主机和传感器的形式,非接触式粗糙度仪主要是光学原理例如激光表面粗糙度仪。从测量使用的方便性上说又可分为:袖珍式表面粗糙度仪(代 表性产品主要有:时代TR100、TR101、TR110、TR150袖珍式表面粗糙度仪和现已停产的英国泰勒DUO袖珍式表面粗糙度仪)、手持式粗糙度仪(代表性产品主要有TR200/220手持式粗糙度仪、泰勒25粗糙度仪、M1/M2粗糙度仪等品牌型号,不一一列举)、便携式粗糙度仪(代表性产品主要有TR240便携式粗糙度仪和TR300粗糙度形状测量仪等)、台式粗糙度仪(品牌型号较多一一列举,有些手持式粗糙度仪和便携式粗糙度仪配上相应的测量平台即可以当台式粗糙度仪使用)。粗糙度仪从功能又可划分为:表面粗糙度仪、粗糙度形状测量仪(TR300粗糙度形状测量仪是界于表面粗糙度仪和表面粗糙度轮廓仪之间的一款测量表面粗糙度的仪器,也可说是微观表面粗糙度轮廓仪)和表面粗糙度轮廓仪(代表性产品主要有英国泰勒表面粗糙度轮廓仪、德国马尔粗糙度轮廓仪、德国霍梅尔表面粗糙度轮廓仪、日本三丰表面粗糙度轮廓仪)。
随着工业的发展和对外开放与技术合作的需要,中国对表面粗糙度的研究 和标准化愈来愈被科技和工业界所重视, 为迅速改变国内表面粗糙度方面的术语和概念不统一的局面,并达到与国际统一的作用,中国等效采用国际标准 化组织(ISO)有关的国际标准制订了GB3505-1983《表面粗糙度术语表面及其参数》。GB3505专门对有关表面粗糙 度的表面及其参数等术语作了规定,其中有三个部分共27个参数术语:a. 与微观不平度高度特性有关的表面粗糙度参数术语。其中定义的常用术语为:轮廓算术平均偏差Ra、 轮廓均方根偏差Rq、轮廓最大高度Ry和微观不平度十点高度Rz等11个参数。
b. 与微观不平度间距特性有关的表面粗糙度参数术语。其中有轮廓微观不平度的平均间距Sm、 轮廓峰密度D、轮廓均方根波长lq以及轮廓的单峰平均间距S等共9个参数。
c. 与微观不平度形状特性有关的表面粗糙度参数术语。这其中有轮廓偏斜度Sk、 轮廓均方根斜率Dq和轮廓支承长度率tp等共5 个
3.精密加工表面性能评价的内容及其迫切性
表面粗糙度参数这一概念开始提出时就是为了研究零件表面和其性能之间的关系,4.表面粗糙度理论的新进展 表面形貌评定的核心在于特征信号的无失真提取和对使用性能的量化评定,国内外学者在这一方面 做了大量工作,提出了许多分离与重构方法。随着当今微机处理技术、集成电路技术、机电一体化 技术等的发展,出现了用分形法、Motif法、功能参数集法、时间序列技术分析法、最小二乘多项式 拟合法、滤波法等各种评定理论与方法,取得了显著进展,下面对相对而言比较成熟的分形法、 Motif法、特定功能参数集法进行介绍。表面粗糙度仪(光洁度)的国家标准主要术语及定义
本资料给出的参数符合GB/T3505-2000《产品几何技术规范表面结构 轮廓法 表面结构的述语、定义及参数》、符合GB/T6062-2002《产品几何量技术规范(GPS)表面结构 轮廓法接触(触针)式仪器的标称特性》。
(1)表面粗糙度:取样长度L
取样长度是用于判断和测量表面粗糙度时所规定的一段基准线长度,它在轮廓总的走向上取样。
(2)表面粗糙度:评定长度Ln
由于加工表面有着不同程度的不均匀性,为了充分合理地反映某一表面的粗糙度特性,规定在评定时所必须的一段表面长度,它包括一个或数个取样长度,称为评定长度Ln。
(3)表面粗糙度:轮廓中线(也有叫曲线平均线)M
轮廓中线M是评定表面粗糙度数值的基准线。
国家规定表面粗糙度的参数由高度参数、间距参数和综合参数组成。
表面粗糙度高度参数共有三个:
(1)轮廓算术平均偏差Ra :
在取样长度L内,轮廓偏距绝对值的算术平均值。
(2)微观不平度十点高度Rz
在取样长度L内最大的轮廓峰高的平均值与五个最大的轮廓谷深的平均值之和。
(3)轮廓最大高度Ry
在取样长度内,轮廓峰顶线和轮廓谷底线之间的距离。
表面粗糙度间距参数共有两个:
(4)轮廓单峰平均间距S
两相邻轮廓单峰的最高点在中线上的投影长度Si,称为轮廓单峰间距,在取样长度L内,轮廓单峰间距的平均值,就是轮廓单峰平均间距。
(5)轮廓微观不平度的平均间距Sm
含有一个轮廓峰和相邻轮廓谷的一段中线长度Smi,称轮廓微观不平间距。
表面粗糙度综合参数:
(6)轮廓支承长度率tp
轮廓支承长度率就是轮廓支承长度np与取样长度L之比。
01_表面粗糙度的标注方法
一、表面结构的表示法 1.表面结构的基本概念 (1)概述 为了保证零件的使用性能,在机械图样中需要对零件的表面结构 给出要求。表面结构就是由粗糙度轮廓、波纹度轮廓和原始轮廓构成的零 件表面特征。 (2)表面结构的评定 评定零件表面结构的参数有轮廓参数、图形参数和支承率曲线参 数。其中轮廓参数分为三种: R 轮廓参数(粗糙度参数)、 W 轮廓参数 (波纹度参数)和 P轮廓参数(原始轮廓参数)。机械图样中,常用表面 粗糙度参数 Ra 和 Rz 作为评定表面结构的参数。 ① 轮廓算术平均偏差 Ra 它是在取样长度 lr 内,纵坐标 Z(x)( 被测轮 廓上的各点至基准线 x 的距离 )绝对值的算术平均值,如图 1 所示。可用下 式表示: ② 轮廓最大高度 Rz 它是在一个取样长度内,最大轮廓峰高与最大轮 廓谷深之和,如图 1 所示。 图 1 Ra、 Rz 参数示意图 国家标准 GB/T1031
涂装表面粗糙度检验
Q/YCRO 烟台中集来福士海洋工程有限公司 企业标准 Q/YCRO027-2011 表 面 粗 糙 度 检 验 2011-08-31发布 2011 -08-31实施 烟 台 中 集 来 福 士 海 洋 工 程 有 限 公 司 发 布 Q/YCRO027-2011 2 页 共 25 页 目 次 前言 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, VII 引言 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, IX 1 范围 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4 2 规范性引用文件 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4 3 术语和定义 ,,,
1、可选择4种测量参数Ra、Rz、Rt、Rq;
2、采用双屏设计,便于在测量时从顶部视窗读数;
3、具有校准功能,操作简单;
4、采用ARM处理器进行数据处理和计算,速度快,功耗低,精度高;
5、OLED液晶显示,高亮度,全视角,宽温度,适合各种场合;
6、手机同步操控功能,避免按键压力对测量的影响,也适用于狭小空间操作。
7、两种充电方式,专用充电器或计算机USB口充电,可边充电边工作,方便快捷;
8、传感器测头具有保护门,有效的保护了传感器测头,保证了测量的精度。
广泛应用于机械加工、航空航天、汽车零配件、通讯、电力、电子等行业,也适用于高校、科研院所、技术监督局、特检院等。
测量参数 |
Ra、Rz、Rq、Rt |
测量范围(μm) |
Ra、Rq:0.05~10.0;Rz、Rt:0.1~50 |
取样长度(mm) |
0.25,0.80,2.5 |
评定长度(mm) |
1.25,4.0,5.0 |
行程长度(mm) |
6 |
示值精度 |
0.01μm |
示值误差 |
±(7-10)% |
示值变动性 |
<12% |
针尖圆弧半径 |
10μm±1μm |
触针静测力 |
≤0.016N |
测力变化率 |
≤800N/m |
传感器导头压力 |
≤0.5N |
电池 |
3.7V锂离子电池 |
外形尺寸 |
110mm×81mm×32mm |
重量 |
150g |