选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

电感

电感是闭合回路的一种属性,是一个物理量。当电流通过线圈后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。这种电流与线圈名。它是描述由于线圈电流变化,在本线圈中或在另一线圈中引起感应电动势效应的电路参数。电感是自感和互感的总称。提供电感的器件称为电感器。 

电感基本信息

电感主要特点

电感是衡量线圈产生电磁感应能力的物理量。当线圈通入非稳态电流时,周围就会产生变化的磁场。通入线圈的功率越大,激励出来的磁场强度越高,反之则小(磁感应强度达到饱和之前)。

电感一般分为空芯电感和磁芯电感两种。空芯电感的电感量是一个定值常数,应用简单。

大型磁芯电感在工业中应用的更多,电感量值的准确与否是关键性问题,无论从理论上还是实际应用中都有重大的意义。

通过公式L=μ×Ae*N2/ l·进行分析。L表示电感量、μ表示磁心的磁导率、Ae表示磁心的截面积、N表示线圈的匝数、lm表示磁心的磁路长度。由此可知,当某个电感生产成型后,Ae、N、lm 都为定值,那么影响电感出厂后量值的就只有磁导率μ了。

查看详情

电感造价信息

  • 市场价
  • 信息价
  • 询价

电感

  • 25UF
  • 13%
  • 吉林市鹏飞照明电气有限公司
  • 2022-12-08
查看价格

电感

  • 17UF
  • 13%
  • 吉林莱特照明工程有限公司
  • 2022-12-08
查看价格

电感

  • 50UF
  • 13%
  • 吉林莱特照明工程有限公司
  • 2022-12-08
查看价格

电感

  • 17UF
  • 13%
  • 吉林市鹏飞照明电气有限公司
  • 2022-12-08
查看价格

电感

  • 50UF
  • 13%
  • 大连世纪晟光照明电器有限公司
  • 2022-12-08
查看价格

  • 机械用
  • kW·h
  • 阳江市2022年10月信息价
  • 建筑工程
查看价格

  • 机械用
  • kW·h
  • 潮州市饶平县2022年10月信息价
  • 建筑工程
查看价格

  • 机械用
  • kW·h
  • 阳江市2022年9月信息价
  • 建筑工程
查看价格

  • 机械用
  • kW.h
  • 阳江市阳西县2022年9月信息价
  • 建筑工程
查看价格

  • 机械用
  • kW.h
  • 阳江市海陵岛区2022年9月信息价
  • 建筑工程
查看价格

电感支架

  • 30W电感支架(反光)
  • 8623套
  • 4
  • 中档
  • 含税费 | 不含运费
  • 2015-05-13
查看价格

电感支架

  • 40W电感支架
  • 7985套
  • 4
  • 中档
  • 含税费 | 含运费
  • 2015-04-22
查看价格

电感支架

  • 40W电感支架(反光)
  • 3179套
  • 4
  • 中档
  • 含税费 | 不含运费
  • 2015-03-31
查看价格

电感镇流器

  • BTA58W 电感镇流器
  • 2324只
  • 4
  • 普通
  • 含税费 | 不含运费
  • 2015-06-05
查看价格

电感支架

  • 30W电感支架
  • 76套
  • 4
  • 中档
  • 含税费 | 不含运费
  • 2015-06-01
查看价格

电感单位及换算

电感符号:L

电感单位:亨(H)、毫亨(mH)、微亨(μH),换算关系为:

1H=1000mH

1mH=1000μH

查看详情

电感定义

导体的一种性质,用导体中感生的电动势或电压与产生此电压的电流变化率之比来量度。稳恒电流产生稳定的磁场,不断变化的电流(交流)或涨落的直流产生变化的磁场,变化的磁场反过来使处于此磁场的导体感生电动势。感生电动势的大小与电流的变化率成正比。比例因数称为电感,以符号L表示,单位为亨利(H)。

电感是闭合回路的一种属性,即当通过闭合回路的电流改变时,会出现电动势来抵抗电流的改变。这种电感称为自感(self-inductance),是闭合回路自己本身的属性。假设一个闭合回路的电流改变,由于感应作用而产生电动势于另外一个闭合回路,这种电感称为互感(mutual inductance)。

电感自感

当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。

电感互感

两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度,利用此原理制成的元件叫做互感器。

查看详情

电感常见问题

查看详情

电感基本概念

电感(inductance of an ideal inductor)是闭合回路的一种属性。当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”。

查看详情

电感计算公式

电感自感

一个通有电流为I的线圈(或回路),其各匝交链的磁通量的总和称作该线圈的磁链ψ。如果各线匝交链的磁通量都是Φ,线圈的匝数为N,则线圈的磁链ψ=NΦ。线圈电流I随时间变化时,磁链Ψ也随时间变化。根据电磁感应定律,在线圈中将感生自感电动势eL,其值为

定义线圈的自感L为自感电动势eL和电流的时间导数dI/dt的比值并冠以负号,即

以上二式中,ψ和eL的正方向,以及ψ和I的正方向都符合右手螺旋规则。已知电感L,就可以由dI/dt计算自感电动势。此外,自感还可定义如下

线性磁媒质下四种自感计算公式

从工程观点看,除铁磁材料以外的媒质可认为是线性磁媒质,它们的磁导率近似等于真空磁导率μ0。置于这种媒质中的线圈的自感,只和线圈及其线匝导体的形状、尺寸有关,和电流的量值无关。

四种几何形状简单的线圈或回路的自感L的计算公式如下:

(1)长螺线管的自感(忽略端部效应和线匝径向尺寸)

式中l为螺线管的长度;S为螺线管的截面积;N为总匝数。

(2)无磁芯环形密绕线圈的自感(环的截面为正方形,环的平均半径为R)

式中b为正方形截面的边长;N为总匝数。若R≫b,则近似有

,形式上与长螺线管自感计算式相同。

(3)同轴电缆的自感(忽略端部效应)

式中R1、R2分别为同轴电缆内外导体的半径;l为电缆长度;Li和Lo分别称为同轴电缆的内自感和外自感,其中内自感Li的值仅与电缆内导体的长度有关,而与其半径无关。

(4)二线传输线的自感(忽略端部效应)

式中R为两导线的半径;l为传输线长度;D为两导线轴线间距离。

电感互感

设线性磁媒质中有两个相邻的线圈。线圈1中有电流I1。I1产生的与线圈2交链的那部分磁通量形成互感磁链ψ21。电流I1随时间变化时,ψ21也随之变化;由电磁感应定律,线圈2中将出现互感电动势EM2

定义线圈1对线圈2的互感M21

类似的,若线圈2中有电流I2,它产生互感磁链ψ12与线圈1交链。I2变化时,线圈1中出现互感电动势EM1

式中M12称线圈2对线圈1的互感。上式是M12的定义式。

若电流I1是恒定电流,或I1是变化率较低的时变电流,互感磁链ψ12和I1成正比,此比例系数(正常数)即线圈1对线圈2的互感M21,且

ψ21=M21I1

类似的,若电流I2是恒定电流或变化率较低的时变电流,ψ2和I2成正比,比例系数即线圈2对线圈1的互感M12,且

ψ12=M12I2

理论证明,M12=M21,用M代表它们,则

在线圈1、2中同时通以时变电流,它们分别是I1、I2时,线圈中的感应电动势e1,e2是自感电动势和互感电动势之和

线性磁媒质下二种互感计算公式

互感M不仅和线圈及其导体的形状、尺寸、真空磁导率μ0有关,还和两线圈的相互位置有关。

(1)两同轴长螺线管间的互感(忽略端部效应,近似认为两螺线管半径为同一数值R,设两螺线管长度分别为l1和l2,且l1>l2)

式中N1,N2分别为两螺线管的匝数。

(2)两对传输线间的互感(设两对二线传输线AA′和BB′相互平行,忽略端部效应及导线半径的影响)

式中DAB′、DA′B、DAB、DA′B′分别为两对传输线间相应导线间的距离,l为传输线长度。

电感三相制均衡输电线的电感

三根输电线之间有互感。在采用三相输电线换位技术后,各相均衡。在考虑了自感磁链和互感磁链的效应后,可得每一相两对平行的传输线输电线单位长度的等效电感L为

式中

(DAB、DBC、DCA分别为相应相线间的距离)称几何平均距离;R为导线半径。

查看详情

电感其他资料

电感极值

最小值与最大值:

电感(L)的最小值由所需维持的最小负载电流的要求来决定。 流过电感L的电流分为连续和不连续两种工作情况。不管是哪种情况,只要是输入、输出电压保持不变,则电流波形的斜率也不会因为负载电流的减小而改变。

如果负载电流I逐渐减小,在电感L中的波动电流最小值刚好为零时,定义为临界电流Ioc则Ioc应等于电流峰一峰值的-半,即

Ioc=1/2△iL

当Io<Ioc时,iL将进人不连续状态Io≥Ioc时iL为连续状态。

单端正激式转换器的闭环控制电路如图所示。图中Cc为去磁复位绕组△的分布电容。连续状态的传递函数有两个极点;不连续状态的传递函数只有一个极点,如果想在状态转换过程中都能稳定地工作,就必须要进行小心细致的设计。

单端正激式转换器的闭环控制电路

L值的另一个限制因素将出现在应用于多组输出电压的情况。 因为控制环只与-个相关的输出端闭环,当此输出端电流低于临界值时,占空比将减少以保持此输出端的电压不变。对于其他的辅助输出端,假定其所带的是恒定负载,在上述占空比下降的情况下,其电压也下降。很明显这不是所希望的,因此在多组输出电压时,为了保持辅助输出电压不变,电感L的值应大于所需的最小值。也就是说,如果辅助电压要保持在一定的波动范围内时,则主输出的电感必须一直超过临界值,即一直在连续状态。

电感的最大值一般受效率、体积和造价的限制,带直流电流运行的大电感的造价是昂贵的。从J眭能上来看,电感L过大将使调节系统的反应速度减慢。因为过大的L在负载出现较大的瞬态变化时限制了输出电流的最大变化率。

电感作用

电感在电路中的作用:

电生磁、磁生电,两者相辅相成,总是随同显示。 当一根导线中拥有恒定电流流过时,总会在导线四周激起恒定的磁场。当把这根导线都弯曲成为螺旋线圈时,应用电磁感应定律,就能断定,螺旋线圈中发生了磁场。将这个螺旋线圈放在某个电流回路中,当这个回路中的直流电变化时(如从小到大或许相反),电感中的磁场也应该会发生变化,变化的磁场会带来变化的“新电流”,由电磁感应定律,这个“新电流”一定和原来的直流电方向相反,从而在短时刻内关于直流电的变化构成一定的抵抗力。只是,一旦变化完成,电流稳固上去,磁场也不再变化,便不再有任何障碍发生。 

从上面的过程来看,电感器的核心作用是阻止电流的变化。比如电流由小到大过程中,电感器都存在一种“滞后”作用,它能在一定时间内抵御这种变化。从另一个角度来说,正因为电感器拥有储存一定能量的作用,因此它才能在变化来临时试图维持原状,但需要说明的是,当能量耗尽后,则只能随波逐流。

电感的“通直阻交”特性,让其在电路中能够发挥巨大的作用。在板卡中,电感多被用在储能、滤波、延迟和振荡等几个方面,是保障板卡稳定、安全运行的重要元件。

主要参数

电感的主要参数有电感量、允许偏差、品质因数、分布电容及额定电流等。

电感量

电感量也称自感系数,是表示电感器产生自感应能力的一个物理量。 电感器电感量的大小,主要取决于线圈的圈数(匝数)、绕制方式、有无磁心及磁心的材料等等。通常,线圈圈数越多、绕制的线圈越密集,电感量就越大。有磁心的线圈比无磁心的线圈电感量大;磁心导磁率越大的线圈,电感量也越大。

电感量的基本单位是亨利(简称亨),用字母“H”表示。常用的单位还有毫亨(mH)和微亨(μH),它们之间的关系是:

1H=1000mH

1mH=1000μH

允许偏差

允许偏差是指电感器上标称的电感量与实际电感的允许误差值。

一般用于振荡或滤波等电路中的电感器要求精度较高,允许偏差为±0.2%~±0.5%;而用于耦合、高频阻流等线圈的精度要求不高;允许偏差为±10%~15%。

品质因数

品质因数也称Q值或优值,是衡量电感器质量的主要参数。 它是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。

电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。

分布电容

分布电容是指线圈的匝与匝之间,线圈与磁心之间,线圈与地之间,线圈与金属之间都存在的电容。电感器的分布电容越小,其稳定性越好。分布电容能使等效耗能电阻变大,品质因数变大。减少分布电容常用丝包线或多股漆包线,有时也用蜂窝式绕线法等。

额定电流

额定电流是指电感器在允许的工作环境下能承受的最大电流值。若工作电流超过额定电流,则电感器就 会因发热而使性能参数发生改变,甚至还会因过流而烧毁。

计算公式

电感量按下式计算:

线圈公式:

阻抗(ohm)=2 * 3.14159 * F(工作频率)* 电感量(mH),设定需用360ohm 阻抗,因此:

电感量(mH)=阻抗(ohm)÷(2*3.14159)÷ F(工作频率)=360÷(2*3.14159)÷ 7.06=8.116mH

据此可以算出绕线圈数:

圈数=[电感量* { (18*圈直径(吋))+(40 * 圈长(吋))}] ÷ 圈直径(吋)

圈数=[8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈

空心电感计算公式

空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H)

D——线圈直径

N——线圈匝数

d——线径

H——线圈高度

W——线圈宽度

单位分别为毫米和mH。

空心线圈电感量计算公式:

l=(0.01*D*N*N)/(L/D+0.44)

线圈电感量:l,单位:微亨

线圈直径:D,单位:cm

线圈匝数:N,单位:匝

线圈长度:L,单位:cm

频率电感电容计算公式:

l=25330.3/[(f0*f0)*c]

工作频率:f0单位:MHZ 本题f0=125KHZ=0.125

谐振电容:c单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q

值决定

谐振电感:l 单位:微亨

线圈电感的计算公式

1、针对环行CORE,有以下公式可利用:(IRON)

L=N2.AL L= 电感值(H)

H-DC=0.4πNI / l N= 线圈匝数(圈)

AL= 感应系数

H-DC=直流磁化力 I= 通过电流(A)

l= 磁路长度(cm)

l及AL值大小,可参照Micrometal对照表。例如:以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH

L=33(5.5)2=998.25nH≒1μH

当流过10A电流时,其L值变化可由l=3.74(查表)

H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后)

即可了解L值下降程度(μi%)

2、介绍一个经验公式

L=(k*μ0*μs*N2*S)/l

其中

μ0 为真空磁导率=4π*10(-7)。(10的负七次方)

μs 为线圈内部磁芯的相对磁导率,空心线圈时μs=1

N2 为线圈圈数的平方

S 线圈的截面积,单位为平方米

l 线圈的长度, 单位为米

k 系数,取决于线圈的半径(R)与长度(l)的比值。

计算出的电感量的单位为亨利(H)。

电感单位

电感符号:L

电感单位:亨(H)、毫亨(mH)、微亨(μH),换算关系为:1H=10^3mH=10^6μH=10^9nH。

换算:数值X10的n次方 如103 即为10X10的三次方nh 为10uh

除此外还有一般电感和精密电感之分

一般电感:误差值为20%,用M表示;误差值为10%,用K表示。

精密电感:误差值为5%,用J表示;误差值为1%,用F表示。

如:100M,即为10μH,误差20%。

单位换算

电感是衡量线圈产生电磁感应勇的物理量,在电路中,当电流经过产生的磁场除以电流的大小,我们称这个量为电感。电感的定义:L=phi/i。实验证明,能过电路的磁通量和通入的电流是成正比的,它们的比值叫自感系数,也叫电感。磁通量我们用&表示,电流用I表示,电感用L表示。电感器是线圈在磁场中活动是,所能感应到的电流的强度,单位是享利(H)

电感单位换算:

1.电感单位为亨利,符号为“H”

2.电感换算:IH=1000mH=1000000uH=1000000000nH=1000000000000pH

3.误差值为±20%;其表示码为:M;误差值为±10%;其表示码为:K;误差值为±1%;其表示码为:F

4.换算规则如下:

数值(AB)×10m=电感值±误差值(10%);数值(AB)×10n=电感值±误差值(5%);

例如:103K=10*1000=10mH+/-10% 221k=22*10=220UH+/-10% 100M=10uH+/-20%

5.电感除符合以上之换算规则外,另有其它代码表示方法,而又因制造厂商的不同,其代码也不一样,对于这种电阻的换算,应根据厂商提供之代码对照表进行核对换算。更多信息联系杨焱13317130006

查看详情

电感基本结构

电感可由电导材料盘绕磁芯制成,典型的如铜线, 也可把磁芯去掉或者用铁磁性材料代替。比空气的磁导率高的芯材料可以把磁场更紧密的约束在电感元件周围,因而增大了电感。电感有很多种,大多以外层瓷釉线圈(enamel coated wire )环绕铁素体(ferrite)线轴制成,而有些防护电感把线圈完全置于铁素体内。一些电感元件的芯可以调节。由此可以改变电感大小。小电感能直接蚀刻在PCB板上,用一种铺设螺旋轨迹的方法。小值电感也可用以制造晶体管同样的工艺制造在集成电路中。在这些应用中,铝互连线被经常用做传导材料。不管用何种方法,基于实际的约束应用最多的还是一种叫做“旋转子”的电路,它用一个电容和主动元件表现出与电感元件相同的特性。用于隔高频的电感元件经常用一根穿过磁柱或磁珠的金属丝构成。

查看详情

电感简介

电感是闭合回路的一种属性,即当通过闭合回路的电流改变时, 会出现电动势来抵抗电流的改变。这种电感称为自感(self-inductance),是闭合回路自己本身的属性。假设一个闭合回路的电流改变,由于感应作用而产生电动势于另外一个闭合回路,这种电感称为互感(mutual inductance)。

自感

当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。

互感

两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度,利用此原理制成的元件叫做互感器。

查看详情

电感基本术语

小型固定电感器

小型固定电感器通常是用漆包线在磁芯上直接绕制而成, 主要用在滤波、振荡、陷波、延迟等电路中,它有密封式和非密封式两种封装形式,两种形式又都有立式和卧式两种外形结构。

1、立式密封固定电感器 立式密封固定电感器采用同向型引脚,国产电感量范围为0.1~2200μH(直标在外壳上),额定工作电流为0.05~1.6A,误差范围为±5%~±10%,进口的电感量,电流量范围更大,误差则更小。进口有TDK系列色码电感器,其电感量用色点标在电感器表面。

2、卧式密封固定电感器 卧式密封固定电感器采用轴向型引脚,国产有LG1.LGA、LGX等系列。

LG1系列电感器的电感量范围为0.1~22000μH(直标在外壳上),额定工作电流为0.05~1.6A,误差范围为±5%~±10%。

LGA系列电感器采用超小型结构,外形与1/2W色环电阻器相似,其电感量范围为0.22~100μH(用色环标在外壳上),额定电流为0.09~0.4A。

LGX系列色码电感器也为小型封装结构,其电感量范围为0.1~10000μH,额定电流分为50mA、150mA、300mA和1.6A四种规格。

可调电感器

常用的可调电感器有半导体收音机用振荡线圈、电视机用行振荡线圈、 行线性线圈、中频陷波线圈、音响用频率补偿线圈、阻波线圈等。

1、半导体收音机用振荡线圈:此振荡线圈在半导体收音机中与可变电容器等组成本机振荡电路,用来产生一个输入调谐电路接收的电台信号高出465kHz的本振信号。其外部为金属屏蔽罩,内部由尼龙衬架、工字形磁心、磁帽及引脚座等构成,在工字磁心上有用高强度漆包线绕制的绕组。磁帽装在屏蔽罩内的尼龙架上,可以上下旋转动,通过改变它与线圈的距离来改变线圈的电感量。电视机中频陷波线圈的内部结构与振荡线圈相似,只是磁帽可调磁心。

2、电视机用行振荡线圈:行振荡线圈用在早期的黑白电视机中,它与外围的阻容元件及行振荡晶体管等组成自激振荡电路(三点式振荡器或间歇振荡器、多谐振荡器),用来产生频率为15625HZ的的矩形脉冲电压信号。 该线圈的磁心中心有方孔,行同步调节旋钮直接插入方孔内,旋动行同步调节旋钮,即可改变磁心与线圈之间的相对距离,从而改变线圈的电感量,使行振荡频率保持为15625HZ,与自动频率控制电路(AFC)送入的行同步脉冲产生同步振荡。

3、行线性线圈:行线性线圈是一种非线性磁饱和电感线圈(其电感量随着电流的增大而减小),它一般串联在行偏转线圈回路中,利用其磁饱和特性来补偿图像的线性畸变。

行线性线圈是用漆包线在"工"字型铁氧体高频磁心或铁氧体磁棒上绕制而成,线圈的旁边装有可调节的永久磁铁。通过改变永久磁铁与线圈的相对位置来改变线圈电感量的大小,从而达到线性补偿的目的。

阻流电感器

阻流电感器是指在电路中用以阻塞交流电流通路的电感线圈, 它分为高频阻流线圈和低频阻流线圈。

1、高频阻流线圈:高频阻流线圈也称高频扼流线圈,它用来阻止高频交流电流通过。

高频阻流线圈工作在高频电路中,多用采空心或铁氧体高频磁心,骨架用陶瓷材料或塑料制成,线圈采用蜂房式分段绕制或多层平绕分段绕制。

2、低频阻流线圈:低频阻流线圈也称低频扼流圈,它应用于电流电路、音频电路或场输出等电路,其作用是阻止低频交流电流通过。

通常,将用在音频电路中的低频阻流线圈称为音频阻流圈,将用在场输出电路中的低频阻流线圈称为场阻流圈,将用在电流滤波电路中的低频阻流线圈称为滤波阻流圈。

低频阻流圈一般采用“E”形硅钢片铁心(俗称矽钢片铁心)、坡莫合金铁心或铁淦氧磁心。为防止通过较大直流电流引起磁饱和,安装时在铁心中要留有适当空隙。

按结构分类

电感器按其结构的不同可分为线绕式电感器和非线绕式电感器 (多层片状、印刷电感等),还可分为固定式电感器和可调式电感器。

按贴装方式分:有贴片式电感器,插件式电感器。同时对电感器有外部屏蔽的成为屏蔽电感器,线圈裸露的一般称为非屏蔽电感器。 固定式电感器又分为空心电子表感器、磁心电感器、铁心电感器等,根据其结构外形和引脚方式还可分为立式同向引脚电感器、卧式轴向引脚电感器、大中型电感器、小巧玲珑型电感器和片状电感器等。

可调式电感器又分为磁心可调电感器、铜心可调电感器、滑动接点可调电感器、串联互感可调电感器和多抽头可调电感器。

按工作频率分类

电感按工作频率可分为高频电感器、 中频电感器和低频电感器。

空心电感器、磁心电感器和铜心电感器一般为中频或高频电感器,而铁心电感器多数为低频电感器。

按用途分类

电感器按用途可分为振荡电感器、校正电感器、显像管偏转电感器、 阻流电感器、滤波电感器、隔离 电感器、被偿电感器等。

振荡电感器又分为电视机行振荡线圈、东西枕形校正线圈等。

显像管偏转电感器分为行偏转线圈和场偏转线圈。

阻流电感器(也称阻流圈)分为高频阻流圈、低频阻流圈、电子镇流器用阻流圈、电视机行频阻流圈和电视机场频阻流圈等。

滤波电感器分为电源(工频)滤波电感器和高频滤波电感器等。

查看详情

电感文献

电感 电感

电感

格式:pdf

大小:2.9MB

页数: 15页

电感

电动机电感计算 电动机电感计算

电动机电感计算

格式:pdf

大小:2.9MB

页数: 83页

学 士 学 位 论 文 矿井提升机直流电控系统设计 作者姓名: 董 佩 导师姓名: 张开如 专业名称: 自动化 所在学院:信息与电气工程学院 山 东 科 技 大 学 2009年 6月 山东科技大学学士学位论文 摘要 摘要 矿井直流提升机电控系统由直流电动机、卷筒、制动系统、深度指示 系统、测速限速系统和操作系统等组成。与传统提升机电控系统相比,该 系统具有单机容量大、体积小、重量轻、起动平滑性好、调速范围宽、精 度高和安全可靠性高等优点。本文主要介绍该系统的硬件电路设计、保护 电路的设计和系统的工作原理。 根据课题的设计要求,本系统从主电路结构的选择和计算、控制方案 的选择、保护电路的设计和系统的动静态特性的分析计算等方面出发,进 行矿井直流提升机电控系统的设计。该系统能完成对矿井直流提升机的起 动、加速运行、匀速运行、减速运行和回馈制动的控制,并且可以实现提 升机的四象限运行。 关键词:

铁心电感铁心电感器电感量计算

铁心电感基本计算式

铁心电感器线圈中通以交流电流后,所产生的磁通分为两部分: 一部分是通过铁心磁 路(包括在铁心磁路中插入非磁性气隙) 的主磁通,另一部分是通过线圈与铁心柱间空隙 的漏磁通。根据电感的基本定义,我们将主磁通产生的电感称为主电感

,将漏磁通产生 的电感称为漏电感
。铁心电感器的电感量L1应为这两部分电感之和,即

在多数情况下,
,故

除特殊情况,一般只需计算其主电感。

铁心电感铁心中无气隙时的电感计算

铁心电感器铁心中无气隙时,其漏电感可忽略不计,电感量按下式计算

式中:L——电感量(H);

——铁心交流磁导率;

N——线圈匝数;

——铁心有效截面积(cm2);

——铁心平均磁路长度 (cm)。

铁心交流磁导率

随铁心材料、铁心型式(尺寸)、工作磁感应强度
或磁场强度
及工作频率f而变化。图1所示为铁心材料采用1J79坡莫合金、厚0.2mm的XE5 铁心在不同磁感应强度下的磁导率曲线。对一些电阻率很高的磁性材料,如铁氧体磁芯, 其磁导率在其允许工作频率范围内不随频率而变,图2所示。而对于粉末磁芯,如 钼坡莫合金、铝硅铁粉芯、羰基铁心等,在其允许的工作频率和磁场范围内,其磁导率基 本是恒定的。

由此可见,正确地确定铁心的磁导率是电感计算的基础。

交流磁导率

可通过测试不同磁性材料和型式的铁心在不同磁场强度 (或磁感应强度)、不同频率下的电感量L后,按下式算得

铁心电感铁心中有气隙时的电感计算

铁心电感器中有气隙时,当忽略其漏电感,其电感量按下式计算

式中:
——铁心磁路中非磁性气隙长度(cm)。式(3) 又可改写为

式中:
——铁心的有效磁导率,按下式计算

时,式 (3) 具有足够的计算精度。

时,由于气隙磁通边缘扩散现 象(图3),使气隙的导磁面积增大,气隙 的有效长度变短。为此必须计算气隙边缘磁通的影响。

考虑气隙磁通扩散后,气隙导磁面积

可按 下式近似计算

气隙的有效长度为

式中:
——考虑气隙磁通扩散后的气隙有效长度(cm);

——铁心磁路中实际的气隙长度 (cm);

——铁心有效截面积(cm2);

——考虑气隙磁通扩散后气隙导磁面积(cm2)。

此时,在按式(3)计算电感或按式(5)计算有效磁导率时,将

代替上述式中的

铁心电感大气隙电感计算

时,由于气隙磁阻决定了铁心磁路中的整个磁阻,故电感量主要取决于 气隙长度。

1. 当忽略漏电感时的电感计算

式中:
——考虑气隙磁通扩散后的气隙有效长度(cm)。

2. 考虑漏电感影响时的电感计算

当漏电感不能忽略时,必须按以下公式计算漏电感

(1) 壳式或单线圈心式铁心电感器(图4) 漏电感按下式计算

式中:
——漏电感 (H);

N——电感器线圈匝数;

——线圈绕线宽度 (cm);

——洛氏系数;

——线圈漏磁等效面积(cm2)。

洛氏系数

按下式计算

式中:
——线圈总厚度(不包括内外层绝缘) (cm);

——线圈与铁心之间隙(cm)。

线圈漏磁等效面积

按下式计算

式中:
——线圈平均匝长(cm)。

(2) 双线圈式铁心电感器(图5) 漏电感按下式计算

式中,

的计算可按式(10)和式(11),但其中的
指每一个线圈的厚度 。

铁心电感器的主电感

按式(8)进行计算。

铁心电感器的电感L为

查看详情

电感器电感的测量

电感测量的两类仪器:RLC测量(电阻、电感、电容三种都可以测量)和电感测量仪。

电感的测量:空载测量(理论值)和在实际电路中的测量(实际值)。由于电感使用的实际电路过多,难以类举。只有在空载情况下的测量加以解说。电感量的测量步骤(RLC测量):

1、熟悉仪器的操作规则(使用说明),及注意事项。

2、开启电源,预备15—30分钟。

3、选中L档,选中测量电感量。

4、把两个夹子互夹并复位清零。

5、把两个夹子分别夹住电感的两端,读数值并记录电感量。

6、重复步骤4和步骤5,记录测量值。要有5—8个数据。

7、比较几个测量值:若相差不大(0.2μH)则取其平均值,记得电感的理论值;若相差过大(0.3μH)则重复步骤2—步骤6,直到取到电感的理论值。

因为不同仪器所测量的电感参数会有一些不同。所以要在做测量前熟悉要使用测量仪器,了解仪器的具体功能,然后按照仪器的操作说明规范操作。

电感器线路图

标注方法1、直标法:在电感线圈的外壳上直接用数字和文字标出电感线圈的电感量,允许误差及最大工作电流等主要参数。

2、色标法:色标法:即用色环表示电感量,单位为mH,第一二位表示有效数字,第三位表示倍率,第四位为误差。

电感器好坏判断

1、电感测量:将万用表打到蜂鸣二极管档,把表笔放在两引脚上,看万用表的读数。

2、好坏判断:对于贴片电感此时的读数应为零,若万用表读数偏大或为无穷大则表示电感损坏。

对于电感线圈匝数较多,线径较细的线圈读数会达到几十到时几百,通常情况下线圈的直流电阻只有几欧姆。损坏表现为发烫或电感磁环明显损坏,若电感线圈不是严重损坏,而又无法确定时,可用电感表测量其电感量或用替换法来判断。

电感器注意事项

一、电感类元件,其铁心与绕线容易因温升效果产生感量变化,需注意其本体温度必须在使用规格范围内.。

二、电感器之绕线,在电流通过后容易形成电磁场。在元件位置摆放时,需注意使相临之电感器彼此远离,或绕线组互成直角,以减少相互间之感应量。

三、电感器之各层绕线间,尤其是多圈细线,亦会产生间隙电容量,造成高频信号旁路,降低电感器之实际滤波效果。

四、以仪表测试电感值与Q值时,为求数据正确,测试引线应尽量接近元件本体..

查看详情

电感器电感分类

电感器自感器

当线圈中有电流通过时候,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。

用导线绕制而成,具有一定匝数,能产生一定自感量或互感量的电子元件,常称为电感线圈。为增大电感值,提高品质因数,缩小体积,常加入铁磁物质制成的铁芯或磁芯。电感器的基本参数有电感量、品质因数、固有电容量、稳定性、通过的电流和使用频率等。由单一线圈组成的电感器称为自感器,它的自感量又称为自感系数。

电感器互感器

两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度,利用此原理制成的元件叫做互感器。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639