选择特殊符号
选择搜索类型
请输入搜索
1 Fundamental Equations of Laminated Beams,Plates and Shells.
1.1 Three-Dimensional Elasticity Theory in Curvilinear Coordinates
1.2 Fundamental Equations of Thin Laminated Shells
1.2.1 Kinematic Relations
1.2.2 Stress-Strain Relations and Stress Resultants
1.2.3 Energy Functions
1.2.4 Governing Equations and Boundary Conditions
1.3 Fundamental Equations of Thick Laminated Shells
1.3.1 Kinematic Relations
1.3.2 Stress-Strain Relations and Stress Resultants
1.3.3 Energy Functions
1.3.4 Governing Equations and Boundary Conditions
1.4 Lamé Parameters for Plates and Shells.
2 Modified Fourier Series and Rayleigh-Ritz Method
2.1 Modified Fourier Series
2.1.1 Traditional Fourier Series Solutions.
2.1.2 One-Dimensional Modified Fourier Series Solutions
2.1.3 Two-Dimensional Modified Fourier Series Solutions
2.2 Strong Form Solution Procedure
2.3 Rayleigh-Ritz Method (Weak Form Solution Procedure)
3 Straight and Curved Beams
3.1 Fundamental Equations of Thin Laminated Beams
3.1.1 Kinematic Relations
3.1.2 Stress-Strain Relations and Stress Resultants
3.1.3 Energy Functions
3.1.4 Governing Equations and Boundary Conditions
3.2 Fundamental Equations of Thick Laminated Beams.
3.2.1 Kinematic Relations
3.2.2 Stress-Strain Relations and Stress Resultants
3.2.3 Energy Functions
3.2.4 Governing Equations and Boundary Conditions
3.3 Solution Procedures
3.3.1 Strong Form Solution Procedure
3.3.2 Weak Form Solution Procedure (Rayleigh-Ritz Procedure)
3.4 Laminated Beams with General Boundary Conditions
3.4.1 Convergence Studies and Result Verification
3.4.2 Effects of Shear Deformation and Rotary Inertia
3.4.3 Effects of the Deepness Term (1 z/R).
3.4.4 Isotropic and Laminated Beams with General Boundary Conditions.
4 Plates
4.1 Fundamental Equations of Thin Laminated Rectangular Plates.
4.1.1 Kinematic Relations
4.1.2 Stress-Strain Relations and Stress Resultants
4.1.3 Energy Functions
4.1.4 Governing Equations and Boundary Conditions
4.2 Fundamental Equations of Thick Laminated Rectangular Plates.
4.2.1 Kinematic Relations
4.2.2 Stress-Strain Relations and Stress Resultants
4.2.3 Energy Functions
4.2.4 Governing Equations and Boundary Conditions
4.3 Vibration of Laminated Rectangular Plates
4.3.1 Convergence Studies and Result Verification
4.3.2 Laminated Rectangular Plates with Arbitrary Classical Boundary Conditions
4.3.3 Laminated Rectangular Plates with Elastic Boundary Conditions.
4.3.4 Laminated Rectangular Plates with Internal Line Supports.
4.4 Fundamental Equations of Laminated Sectorial, Annular and Circular Plates
4.4.1 Fundamental Equations of Thin Laminated Sectorial, Annular and Circular Plates
4.4.2 Fundamental Equations of Thick Laminated Sectorial, Annular and Circular Plates
4.5 Vibration of Laminated Sectorial, Annular and Circular Plates
4.5.1 Vibration of Laminated Annular and Circular Plates
4.5.2 Vibration of Laminated Sectorial Plates
5 Cylindrical Shells
5.1 Fundamental Equations of Thin Laminated Cylindrical Shells
5.1.1 Kinematic Relations
5.1.2 Stress-Strain Relations and Stress Resultants
5.1.3 Energy Functions
5.1.4 Governing Equations and Boundary Conditions
5.2 Fundamental Equations of Thick Laminated Cylindrical Shells
5.2.1 Kinematic Relations
5.2.2 Stress-Strain Relations and Stress Resultants
5.2.3 Energy Functions
5.2.4 Governing Equations and Boundary Conditions
5.3 Vibration of Laminated Closed Cylindrical Shells
5.3.1 Convergence Studies and Result Verification
5.3.2 Effects of Shear Deformation and Rotary Inertia
5.3.3 Laminated Closed Cylindrical Shells with General End Conditions
5.3.4 Laminated Closed Cylindrical Shells with Intermediate Ring Supports
5.4 Vibration of Laminated Open Cylindrical Shells
5.4.1 Convergence Studies and Result Verification
5.4.2 Laminated Open Cylindrical Shells with General End Conditions
6 Conical Shells.
6.1 Fundamental Equations of Thin Laminated Conical Shells
6.1.1 Kinematic Relations
6.1.2 Stress-Strain Relations and Stress Resultants
6.1.3 Energy Functions
6.1.4 Governing Equations and Boundary Conditions
6.2 Fundamental Equations of Thick Laminated Conical Shells
6.2.1 Kinematic Relations
6.2.2 Stress-Strain Relations and Stress Resultants
6.2.3 Energy Functions
6.2.4 Governing Equations and Boundary Conditions
6.3 Vibration of Laminated Closed Conical Shells
6.3.1 Convergence Studies and Result Verification
6.3.2 Laminated Closed Conical Shells with General Boundary Conditions.
6.4 Vibration of Laminated Open Conical Shells
6.4.1 Convergence Studies and Result Verification
6.4.2 Laminated Open Conical Shells with General Boundary Conditions.
7 Spherical Shells
7.1 Fundamental Equations of Thin Laminated
……
8 Shallow Shells
References and Further Reading2100433B
书名:结构振动:任意边界条件层合梁、板、壳结构的准确解法(英文版)
原价:150.00元
作者:Gipupmg Jin·Tiangui Ye Zhu Su
出版社:科学出版社
出版日期:2015-01-01
ISBN:9787030435941
字数:400000
页码:312
版次:1
装帧:精装
开本:16开
商品重量:0.4kg
假定粱在XY平面内,粱沿X方向放置,左边固定饺支座,右边滑动饺支座,那么边界为:左边(u1=0,u2=0),右边(u2=0),如果是平面粱,还应限制整根粱Z向位移,以及粱绕X轴的转动。
室内设计软件:AutoCAD2004(常用)、3Dmax效果图建模、lightscape3.2渲染软件,photshop7。0图片处理软件。 学室内设计,首要先看懂设计图纸,AutoCAD软件一般画施...
典型造价设计边界条件(V1.0版)
附件 3 典型造价设计边界条件 一、电气专业: (1)未采用拉线塔或钢管杆; (2)耐张塔比例: 15mm 及以下冰区, 500kV 为杆塔总数的 15%, 110、220kV 为杆塔总数的 17%。 (3)未考虑林区高跨的影响; (4)交叉跨越按一般情况考虑,未考虑城市近郊等多跨越情况; (5)污秽等级按Ⅱ级考虑;悬垂绝缘子串及耐张绝缘子串均采用盘 型绝缘子; (6)塔头设计按《 110kV~ 750kV 架空输电线路设计规范》 (GB 50545-2010)执行; (7)地线按两根普通地线考虑。 (8)10mm及以下冰区直线塔平均呼高及水平档距利用率: 项目 电压 (kV) 地 形 平丘 山地 高山 直线塔平均呼高 500 32 36 36 220 20.5 24 25 110 17.5 21 21.5 水平档距利用率 85% 82% 80% (9)10mm及以下冰区单公里
考虑弹性隔板边界条件的柱形封闭腔结构-声耦合分析
通过在柱形腔体内的弹性隔板四周施加假想的弹簧系统,建立了考虑弹性隔板边界条件的圆柱形腔体内的声场模型。该模型利用汉密尔顿函数和声模态理论,充分考虑弹性隔板与两个柱形腔体内声场之间的耦合以及弹性板的边界条件对腔体内声场的影响。通过算例分析表明在所研究的低频段,支承弹性板的旋转弹簧刚度对腔体内声场与弹性板之间振动耦合的影响弱于线弹簧刚度,由腔体1的内声场引起的弹性隔板的振动速度受线弹簧刚度的影响要甚于旋转弹簧刚度;腔体2内的平均声压随支承弹性隔板的线弹簧刚度的增大而增加,而旋转弹簧刚度的变化对声压的影响较小。该项研究为工程中柱形腔体内设置有弹性板的结构噪声分析和控制提供了一定的理论依据。
《结构工程前沿丛书:静力梁函数在结构振动分析中的应用(英文版)》针对经典的欧拉梁理论和克西霍夫理论,以及铁木辛柯梁理论和米德林中厚板理论,分别建立个了各自的静力梁函数。取这些静力梁函数作为试函数,利用李兹法导出特征方程。研究结果表明,静力梁函数法不但能够给出高精度的固有频率,而且能够给出高精度的动力响应,特别是能够很好地模拟内部线支引起的剪力跳跃。《结构工程前沿丛书:静力梁函数在结构振动分析中的应用(英文版)》共21个章节,从变厚度欧拉梁的动力学特性计算直到储液罐的流-固耦合振动分析结束。内容构成一个完整的应用体系。《结构工程前沿丛书:静力梁函数在结构振动分析中的应用(英文版)》的研究方法,系作者首次独立提出,其中的绝大部分内容,均已被作者发表于国际著名的核心期刊。
批准号 |
10376047 |
项目名称 |
板壳结构振动响应优化的三维分析 |
项目类别 |
联合基金项目 |
申请代码 |
A31 |
项目负责人 |
蹇开林 |
负责人职称 |
教授 |
依托单位 |
重庆大学 |
研究期限 |
2004-01-01 至 2006-12-31 |
支持经费 |
25(万元) |
系统建立复合材料层合梁板壳各种变分原理,提出新的变分差分方法和新的高效迭代法,以适用于大条件数时的层间强度、大位移大转动几何非线性和动力分析;建立复合材料层合梁板壳哈密顿体系的变分差分方程,提出相应的辛算法;并且研制相应的微机软件。本项研究丰富了复合材料层合梁板壳静动力分析的方法和内容,具有重要的理论和实际意义。 2100433B