选择特殊符号
选择搜索类型
请输入搜索
跨阻(转移电阻),也常常被称为互阻,是跨导的双重性。它是指两个输出点电压变化与两个输入点电流变化的比值,记为rm:
跨阻国际单位就是欧姆,就像阻力一样。
跨阻(或转移阻抗)是互阻的交流等效,是互导的二元。
跨导通常用gm表示。对于直流电,跨导可以定义为:
对于交流电小信号模型,跨导的定义相对更为简单:
在SI单位中,西门子公司,用符号,S;1西门子=1安培每伏更换旧的电导率,具有相同的定义,mho(欧姆拼写向后),符号,℧。
对于真空管,跨导被定义为板(阳极)/阴极电流的变化除以电网/阴极电压的相应变化,恒定板(阳极)/阴极电压。gm典型值为小信号真空管是1至10毫西门子。它是真空管的三个特征常数之一,另外两个是增益μ(mu)和平板电阻rp或ra。在范德Bijl公式定义它们之间的关系如下:
类似地,在场效应晶体管和MOSFET中,跨导是漏极电流的改变除以栅极/源极电压的小改变以及恒定的漏极/源极电压。gm的典型值为小信号场效应晶体管是1至30毫西门子。
使用Shichman-Hodges模型,MOSFET的跨导可以表示为:
其中ID是在直流漏电流偏置点,和VOV是过驱动电压,这是偏置点栅极-源极电压和之间的差的阈值电压(即,VOV≡VGS-Vth)。的过驱动电压(有时也被称为有效电压)在约70-200毫伏习惯上选择用于65纳米技术节点(ID≈1.13mA/μm),用于gm的11-32mS/μm。
另外,结FET的跨导由下式给出,其中VP是夹断电压,IDSS是最大漏极电流。
传统上,上式中给出的FET和MOSFET的跨导是使用微积分从每个器件的传输方程导出的。然而,卡特赖特已经证明,这可以在没有微积分的情况下完成。
所述gm的双极小信号晶体管差别很大,成比例的集电极电流。典型的范围是1到400毫西门子。在基极/发射极之间施加输入电压变化,输出是在具有恒定的集电极/发射极电压的集电极/发射极之间流动的集电极电流的变化。
双极晶体管的跨导可以表示为
其中IC=在Q点的DC集电极电流,VT=热电压,在室温下通常约为26mV。10毫安,典型电流gm≈385毫秒。
输出(集电极)电导由Early电压决定,与集电极电流成正比。对于线性操作的大多数晶体管,它远低于100μS。
如图,导图时跨数校核,出现的问题,如何加支座?使之成为属性的一跨? 把右侧延伸到梁中,然后再重新提取梁跨,如果还不能成为一跨时,再进行编辑支座.(要使右红色梁和右侧相交,点上方工具栏中的延伸,再点右侧...
在识别梁界面点击”编辑支座“,然后左键选中要校核的梁图元,根据提示把不是支座的点删除,没有识别的支座添加上。
跨板负筋还是用手画上去来得快。
跨导放大器
跨导放大器(gm放大器)推出的电流正比于它的输入电压。在网络分析中,跨导放大器被定义为电压控制电流源(VCCS)。看到这些放大器安装在共源共栅配置,这是常见的,这提高了频率响应。
跨阻放大器
跨阻放大器输出正比于它的输入电流的电压。跨阻放大器通常被称为跨阻放大器,特别是半导体制造商。
网络分析中的跨阻放大器的术语是电流控制电压源(CCVS)。
一个基本的反相互阻放大器可以由一个运算放大器和一个电阻构成。只需在运算放大器的输出端和反相输入端之间连接电阻,并将同相输入端接地即可。然后,输出电压将与反相输入端的输入电流成比例,随着输入电流的增加而减小,反之亦然。在实践中,任何器件的寄生电容连接到运算放大器的虚拟地可能使其不稳定,并且必须在输出和反相引脚之间并联添加补偿电容。达到这个补偿电容的最佳值可能是不平凡的。
专用芯片跨阻(互阻抗)放大器广泛用于放大来自超高速光纤链路接收端的光电二极管的信号电流。MAX3724和MAX3725就是例子。
运算跨导放大器
一个运算跨导放大器(OTA)是集成电路能够作为跨导放大器的作用。这些通常有一个允许跨导控制的输入。2100433B
【免费下载】大跨作业1大跨论文指导书
1 2013 大跨房屋钢结构作业 1 ——(大跨论文)指导书 内容可含: 一、大跨房屋结构定义 二、大跨房屋结构特点 三、大跨房屋结构建设过程与结构形态 四、大跨房屋结构分类 五、大跨房屋结构设计法规 六、大跨房屋结构设计方法及步骤 七、大跨房屋结构分析方法 八、大跨房屋结构设计技术手段 九、大跨房屋屋盖构造 附:大跨概论参考 提示:已经非常清楚的要简明扼要,需要强化的要详。 一、大跨结构定义 ——指屋盖跨度≥ 60m。 二、大跨结构的特点 —— 竖向作用控制设计。自重是主要荷载。挠度是关键变形。 (推论:采用钢结构、铝合金结构合理;采用高强钢比普通钢合理;采用轻型屋盖比重 型屋盖合理;大跨建筑更适宜采用预应力钢结构和膜屋面)。 三、大跨结构建设过程与结构形态 ① 建设过程: 设计→制造→安装。 ? 当前国内: →设计公司完成钢结构设计图; →制造公司按设计要求绘制施工详图,完成放样、零部
跨阻型集成带阻滤波器设计
作为一种独特的滤波器形式,跨阻滤波器在集成电路中起着重要作用.基于LC原型电路,提出了一种跨阻型集成带阻滤波器的设计方法.首先用状态变量表示LC元件变量关系,然后将关系式表示成信号流图形式,用全差分放大器替换其中的积分部分,最后集成得到全差分有源跨阻带阻滤波器.为验证设计的可行性,给出了六阶Chebyshev跨阻集成带阻滤波器的设计过程及其Hspice计算机仿真结果.仿真结果表明,所设计的滤波器满足设计参数要求,滤波性能良好.
跨导(英语:Transconductance)是电子元件的一项属性。电导(G)是电阻(R)的倒数;而跨导增益则指输出端电流的变化值与输入端电压的变化值之间的比值。通常用 gm表示。
对于直流电,跨导增益可以定义为:
对于交流电小信号模型,跨导增益的定义相对更为简单:
对于真空管,跨导被定义为板(阳极)/阴极电流的变化除以电网/阴极电压的相应变化,恒定板(阳极)/阴极电压。gm典型值为小信号真空管是1至10毫西门子。它是真空管的三个特征常数之一,另外两个是增益μ(mu)和平板电阻rp或ra。在范德Bijl公式定义它们之间的关系如下:
类似地,在场效应晶体管和MOSFET中,跨导是漏极电流的改变除以栅极/源极电压的小改变以及恒定的漏极/源极电压。gm的典型值为小信号场效应晶体管是1至30毫西门子。
使用Shichman-Hodges模型,MOSFET的跨导增益可以表示为:
其中ID是在直流漏电流偏置点,和VOV是过驱动电压,这是偏置点栅极-源极电压和之间的差的阈值电压(即,VOV≡VGS-Vth)。的过驱动电压(有时也被称为有效电压)在约70-200毫伏习惯上选择用于65纳米技术节点(ID≈1.13mA/μm),用于gm的11-32mS/μm。
另外,结FET的跨导增益由下式给出,其中VP是夹断电压,IDSS是最大漏极电流。
传统上,上式中给出的FET和MOSFET的跨导是使用微积分从每个器件的传输方程导出的。然而,卡特赖特已经证明,这可以在没有微积分的情况下完成。
所述gm的双极小信号晶体管差别很大,成比例的集电极电流。典型的范围是1到400毫西门子。在基极/发射极之间施加输入电压变化,输出是在具有恒定的集电极/发射极电压的集电极/发射极之间流动的集电极电流的变化。
双极晶体管的跨导增益可以表示为
其中IC=在Q点的DC集电极电流,VT=热电压,在室温下通常约为26mV。10毫安,典型电流gm≈385毫秒。
输出(集电极)电导由Early电压决定,与集电极电流成正比。对于线性操作的大多数晶体管,它远低于100μS。
跨导放大器(gm放大器)推出的电流正比于它的输入电压。在网络分析中,跨导放大器被定义为电压控制电流源(VCCS)。看到这些放大器安装在共源共栅配置,这是常见的,这提高了频率响应。
跨阻放大器输出正比于它的输入电流的电压。跨阻放大器通常被称为跨阻放大器,特别是半导体制造商。
网络分析中的跨阻放大器的术语是电流控制电压源(CCVS)。一个基本的反相互阻放大器可以由一个运算放大器和一个电阻构成。只需在运算放大器的输出端和反相输入端之间连接电阻,并将同相输入端接地即可。然后,输出电压将与反相输入端的输入电流成比例,随着输入电流的增加而减小,反之亦然。在实践中,任何器件的寄生电容连接到运算放大器的虚拟地可能使其不稳定,并且必须在输出和反相引脚之间并联添加补偿电容。达到这个补偿电容的最佳值可能是不平凡的。专用芯片跨阻(互阻抗)放大器广泛用于放大来自超高速光纤链路接收端的光电二极管的信号电流。MAX3724和MAX3725就是例子。
一个运算跨导放大器(OTA)是集成电路能够作为跨导放大器的作用。这些通常有一个允许跨导控制的输入。