选择特殊符号
选择搜索类型
请输入搜索
拼音:tanxingmoliang
英文名称: young's modulus/ elastic modulus/tensile modulus
定义:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律-hooke's law),其比例系数称为弹性模量。
单位:[力]/[长度]^2,在国际单位制中单位是Pa。
意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
弹性模量是弹性材料的一种最重要、最具特征的力学性质。是物体弹性变形难易程度的表征。用E表示。定义为理想材料有小形变时应力与相应的应变之比。E以单位面积上承受的力表示,单位为牛/米^2。模量的性质依赖于形变的性质。剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。模量的倒数称为柔量,用J表示。
拉伸试验中得到的屈服极限бS和强度极限бb,反映了材料对力的作用的承受能力,而延伸率δ或截面收缩率ψ,反映了材料塑性变形的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。一般按引起单位应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:
式中A0为零件的横截面积。
由上式可见,要想提高零件的刚度EA0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从胡克定律,即变形与受力成正比。拉伸弹性模量E,也叫杨氏模量。
弹性模量在比例极限内,材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比,用牛/米^2表示。
tangentmodulus
在静态应力-应变曲线上每点的斜率,称为正切模量。通常塑性材料应力-应变曲线是非线性的,一般来说某点的正切模量是由该点附近应力变化量与应变变化量之比进行计算。塑性材料不同于金属材性,它具有黏弹性,这就导致力与形变关系不是线性关系。工程上希望知道其相关模量,从而提出正切模量。该模量只能看作是非弹性极限范围内的宏观的模量的一种表述,为设计提供一种参考。
modulus(复数形式为moduli)
材料在受力状态下应力与应变之比。相应于不同的受力状态,有不同的称谓。例如,拉伸模量(E);剪切模量(G);体积模量(K);纵向压缩量(L)等。该词由拉丁语“小量度”演化而来。原来专指材料在弹性极限内的一个力学参数。故在不加任何定冠词时往往就认为指弹性模量,即应力与应变之比是一常数。该值的大小是表示此材料在外力作用下抵抗弹性变形的能力。
土的变形模量是土体在无侧限条件下应力与应变之比值,相当于弹性模量。由于土体不是理想的弹性体,故称为变形模量。土的变形模量反映了土体抵抗弹塑性变形的能力,可用于弹塑性问题分析,通常可以通过三轴试验或现场...
在浙江10定额的定额解释中,说明“9、实际工程中如何运用含模量参考表? 答:混凝土构件模板工程量,除合同(或招标文件)约定按含模量计算外,未约定的均应按与混凝土的接触面积计算。”;如果需要用含模量,...
压缩模量是在完全侧限的情况下室内试验得到的,变形模量是现场侧线很小的情况下测得的;理论上应该是压缩模量大于变形模量。但是压缩模量是室内试验,要取样,取样过程中对土样的扰动较大,所以实际中经常遇到压缩模...
由于应力导前应变一个相位角,使得应变分成了两个部分,第一部分为弹性贡献,与应变成线性关系,第二部分为粘性贡献,与应变速率成线性关系。即弹性响应与粘性响应分别造成各自的应力,其线性加和就是材料的总应力。
公式:E(t)=|σ(t)|/|ε(t)|=σ/ε(1)
式中:E(t)为动态模量;σ(t)、ε(t)为应力和应变时间函数;σ、ε分别为应力和应变的振幅。
由于相位差的存在,动态模量是一个复数,G=G’ iG’’,G’是弹性响应的系数,称为储能模量;G’’/ω为黏性响应的系数,故称为损耗模量。G’和G’’合称动态模量
压缩模量的错误和弦线模量的改正
压缩模量的错误和弦线模量的改正——压缩模量计算沉降量的不确定性很大。弦线模量不用力学试验,根据土的物理指标取值:一般粘性土用孔隙比、含水率,软土类土用孔隙比,计算结果用液限修正。弦线模量用的是土的常规指标,所以和压缩模量的计算可以一一对比。对...
地基系数、变形模量和动态变形模量的测试与对比
针对铁路客运专线对路基检测技术的要求,介绍地基系数K30、变形模量Ev2、动态变形模量Evd三种力学性能指标的测试原理、测试方法;结合京沪高速铁路实践,对各指标实测值进行对比、分析,指出Evd检测可以代替K30、Ev2检测,Evd指标与物理检测指标共同使用,能够全面反映路基压实情况并保证工程质量。
用来表示当材料发生形变时,能量转化成热能的阻尼术语,是复杂模型的一个简单部分,是从能量损耗的角度对“储能模量”进行分析而产生的术语。
当材料的储能模量大于耗能模量时,处于固化阶段的胶黏剂达到凝胶点。2100433B
静态弹性模量是描述黏性土性质的关键参数,是工程选址、设计、施工等的科学依据,但静态弹性模量需从地下取出待研究层段的岩芯、通过室内传统的土工试验来确定,并存在原位和试验两者边界条件的差异,且因取样的有限性和局限性难避免以点代线和代面现象。弹性波速度与岩土的密度、岩土性质、砂粒数量与胶结程度、孔隙充填物与饱和度等直接相关,由纵横波速度可无损、低成本和快速获取岩土的动态弹性模量。因此,为了便于应用于实际工程中,必须将它们转换为静态弹性模量,也就说必须建立起动、静态弹性模量之间的关系。早在 1933 年,Harvard 大学的 W. Zisman就认为岩石动、静态弹性模量之间存在差异,之后许多研究人员对此进行了研究 。
土的压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。
土的弹性模量:土的弹性模量根据测定方法不同,可分为"静弹模"和"动弹模"。静弹模采用静三轴仪测定。弹性模量为加卸载该曲线上应力与应变的比值。 动弹模,可用室内动三轴仪测得,当土样固结后,分级施加动应力,进行不排水的振动试验,一般保持动应力幅值不变,振动次数视工程实际条件而定可用双曲线方程来描述,也称切线弹模。
土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。由于两者在压缩时所受的侧限条件不同,对同一种土在相同压应力作用下两种模量的数值显然相差很大。三种模量的试验方法不同,反映在应力条件、变形条件上也不同。压缩模量是在室内有侧限条件下的一维变形问题,变形模量则是在现场的三维空间问题;另外土体变形包括了可恢复的(弹性)变形和不可恢复的(塑性)变形两部分。压缩模量和变形模量是包括了残余变形在内的,与弹性模量有根本区别,而压缩模量与变形模量的区别又在于是否有侧限。在工程应用上,我们应根据具体问题采用不同的模量。