选择特殊符号
选择搜索类型
请输入搜索
实际的热力过程比较复杂,概括起来,可归纳为以下四个基本过程和一个多变过程。实际过程可看作是它们的组合。
所有的热力学过程都假设在两个空间之中没有任何粒子渗透。假设两个空间都是固定而绝热的,但是可以对于多过一种粒子进行渗透。同样的考虑可以应用在化学势和粒子数目的共轭对。
其特征是系统的体积为常数。对于等容过程,如果系统和环境间除膨胀功以外,没有其他功的交换,则:
W=0,Q=ΔU
对于无相变化和化学变化的等容过程: Q=ΔU=nCv(T2-T1)
式中Q为热能,系统吸热为正,放热为负;W 为功,作功为正,得功为负;U是系统的内能;Cv是平均定容摩尔热容;n是摩尔数。
其特征是系统的压力为常数。对于等压过程如果系统与环境间除膨胀功外无其他功的交换,则: W=p(V2-V1),Q=ΔH=H2-H1=nCp(T2-T1)
式中H为系统的焓,H=UpV;Cp为平均定压摩尔热容。
其特征是系统的温度为常数。如果是可逆等温过程,则: Q=TΔS=T(S2-S1),W=Q-ΔU=TΔS-ΔU
式中S为系统的熵。如果是理想气体的等温膨胀(或压缩)过程,系统的状态变化满足pV=常数。
等温过程,顾名思义,在过程中温度保持不变。例子:当贮存器的容量足够大,或者是改变容量的过程足够慢,被浸在一个恒温水池等等。换句话说,这个系统在温度被一个可传热的空间连结在一起。 在过程中,系统的净能量没有因为加热或冷却而有所改变,称为绝热过程。对于一个可逆的过程,这与等熵过程一样。我们可说这个系统因为一个绝缘的空间在热能上与外围隔绝。留意的是,如果一个系统中的熵未达到最高的平衡数值,那么熵的值在系统纵使在热能上被隔绝仍会一直增加。 一个等熵过程就是熵的数值一直是常数。对于一个可逆的过程,这与绝热过程一样。如果一个系统中的熵未达到最高的平衡数值时,对该系统进行冷却便可能需要维持熵的数值不变。 任何热力学势都可能在过程中保持常数, 例如:在一个等焓过程中,焓保持不变。
其特征是系统与环境间无热交换,因此: W=-ΔU
如果是理想气体的可逆绝热膨胀(或压缩)过程,系统的状态变化满足pV=常数γ,式中γ=cp/cv,即定压比热容cp与定容比热容cv之比,称为比热容比。
在许多实际过程中,经验表明,系统的状态变化近似地遵循下述规律: pV=常数m
式中 m为多变指数,这类过程称为多变过程。引入多变过程的概念可使数学处理简化,但是此式只能在经过检验的范围内使用。当m取特定的数值时,这一多变过程可转化为上述各种基本过程。例如m=0,则p=常数,即转化为等压过程;m=1,pV=常数,即为理想气体的等温过程;m=γ,即转化为理想气体的可逆绝热过程。在多数情况下,m=1.2~1.5。
热力学过程的定义是一个热力学系统由开始到完结的状态中所涉及的能量转变。在过程中,路径会因为受到某一些热力学的变量要保持常数而变得指定,以下将以共轭对来对热力学过程进行解说,因为当其中一个变量设为常数时,刚好是另一个的共轭对。
首先,压力和容量是其中一个共轭对。因为两者都涉及以传送机械能或动能形式的作功。
在过程中,当压力维持是常数时,称为等压过程。例子:在一个圆筒中有一个可动的活塞,从而令到在系统在与大气压力隔绝的情况下仍能保持一致。即是,系统在动能上透过一个可动的空间连结在一起,以达致一个等压的贮存器。 相对地,当一个系统的容量维持是常数时,称为等容过程,代表该系统对外围没有任何作功。对于一个二维空间,所有的从外来的热能量传送将直接被系统所吸收作为内能。例子:当燃烧一个密封的铁罐内的空气。在最初的时候,铁罐并没有变形(容量不变),但从系统的温度和气压上升,可以结论气体的内能有所增加,这亦是唯一的改变。 数学上,δQ = dU。这个系统可以说上动能上被一个固定的空间从外围所隔绝。
另一组的共轭对是温度和熵。皆因两者都有透过加热来传送热能。
通常所遇到的热力学过程有:
等温过程,系统的始态和终态的温度与环境温度相同, 且环境温度不变的过程。在变化过程中系统温度不一定恒定。
等压过程,系统的始态和终态的压力与环境压力相等, 且环境压力为一恒定值的过程。在变化过程中系统的压力不一定恒定。
等容过程,系统的始态和终态体积相等的过程, 即ΔV=0。
绝热过程,系统与环境之间用绝热壁隔开, 此时系统中所进行的过程称为绝热过程。
循环过程,系统经一系列变化后又回到原来状态的过程。
化工生产中应用热力过程的作用:
①使原料、中间产品和产品完成预期的状态变化,以满足后续工序加工和产品使用的要求,例如在合成氨工厂中,氮氢混合气进入合成塔前,必须经过压缩,将气体压力升高到合成塔的操作压力。②实现能量的传递和转化,以满足某种过程的需要,并有效地利用能量。例如通过热力过程循环把合成氨厂中各种工艺余热转化为机械功。
化工生产中常用的热力过程如下:
(1)流体的压缩过程,这是流体的升压过程,其目的是供给能量以克服流体输送过程中受到的阻力,或满足后续工序的要求。气体压缩过程的功耗,可用压缩机的等熵效率估算,也可用压缩机的等温效率估算。
(2)流体的膨胀过程,这是流体的降压过程。流体膨胀的目的:①降低流体的压力,以适应后续工序的需要。如锅炉的蒸汽压力高于用汽设备的使用压力时,降压才能使用。②降低气体的温度,以获得低温或使气体液化,如制冷和深度冷冻时的气体降压。③通过降压释放能量,对外作功,如蒸汽通过汽轮机(透平)喷嘴降压后,动能增加,推动叶轮旋转并输出轴功。流体膨胀过程的可逆轴功是流体从p1膨胀到p2时可回收的最大有用功,为: 气体和液体都可通过节流阀实现膨胀,但这时可逆轴功被耗散为无效能。当气体和液体分别在膨胀机和水轮机中膨胀时,可以回收部分有用功。膨胀机和水轮机的输出轴功,可由等熵效率估算: WS=ηS(-ΔHS)也可用等温效率估算: 式中ηS和ηT分别为膨胀机或水轮机的等熵效率和等温效率。
(3)蒸汽动力循环,利用工作介质的循环变化将热能转化为机械能的过程。最简单的蒸汽动力循环是兰金循环。液态工作介质在锅炉吸热而蒸发成为过热蒸汽,再经透平膨胀成低压湿蒸汽,接着进入冷凝器冷凝成为饱和液体,最后经泵加压重又进入锅炉中,完成了一个循环。
利用制冷工作介质的循环变化将热量由低温物体传给高温环境的过程。制冷循环有空气压缩制冷循环、蒸气压缩制冷循环、蒸汽喷射制冷循环、吸收制冷循环等。
化工生产采用制冷循环的目的,是获得低温以发生预期的变化,或充分利用低温位热。例如小型工厂中用吸收制冷装置回收利用低温位热,以节约电能。
热泵循环的流程与蒸气压缩制冷循环相同,区别仅在于工作的温度范围不同:热泵循环的下限温度是环境温度,上限温度为供热温度;制冷循环的上限温度是环境温度,下限温度为制冷温度。在化工生产中,通过热泵循环提高热的温位,热能可以循环使用或回收利用。对于温度降低不大的过程,例如沸点上升不大的蒸发和组分沸点差很小的精馏,都可通过热泵循环以节约能耗。2100433B
在热力学的绝热过程中,如果内能不变那么熵就不会改变。熵,热力学中表征物质状态的参量之一,通常用符号S表示。在经典热力学中,可用增量定义为 dS=(dQ/T)可逆 ,式中T为物质的热力学温度;d...
能源与动力工程学院是华中科技大学前身之一的华中工学院建校时创办的四个院(系)之一,也是华中科技大学办学规模大、专业门类全、学科覆盖面宽的学院之一。学院以能源、动力与环境工程为学科背景,设置宽口径的本科...
我认为 咱们有缘呀!!!咱们好象是一个专业哦!没办法,同样是一句二句说不清楚,只以加我,我才能告诉你具体的答案呀!!!
热力学论文
北 京 化 工 大 学 课程论文 课程名称:高等化工热力学 任课教师:密建国 专 业:化学工程与技术 班 级: 姓 名: 学 号: 活性炭吸附储氢过程的热力学分析 摘要 储氢过程中热效应的不利影响是氢气吸附储存应用于新能源汽车需要解决 的关键问题之一。文章首先介绍了活性炭吸附储氢过程的热力学分析模型 ,包括 吸附等温线模型 ,吸附热的热力学计算以及气体状态方程。对吸附等温线模型的 研究意义及选取、 吸附过程中产生吸附热的数值确定方法、 不同储氢条件下气体 状态方程的适用性及选取进行了探讨。 关键词 :活性炭 ;吸附 ;储氢;热力学 第一章 绪论 1.1研究背景及意义 1.1.1研究背景 氢能 ,因其具有众多优异的特性而被誉为 21 世纪的绿色新能源。首先 ,氢能 具有很高的热值 ,燃烧 1kg 氢气可产生 1.25x10 6 kJ 的热量 ,相当于 3kg 汽油或 4.5kg 焦炭完全燃烧
热力学文章
热力学一般关系式及其应用 一. 热力学一般关系式 热力学一般关系式是根据热力学第一定律、 热力学第二定律以及某些状态参数的定义式 而导得的一些微分方程式。 它们以微分的形式来表达各种热力学参数之间的关系, 故也称热 力学微分方程式. 由于热力学一般关系式是从热力学的基本定律导得的. 因此,具有普遍适 用氏不仅适用于理想气体,也适用于实际气体,甚至还适用于固体和液体. 1).闭口系统的四个基本关系式 闭口系统热力学第一定律表达式为 Q=dU+ W 对简单可压缩系统,当过程为可逆时,则上式变成 Q=dU+pdV 根据热力学第二定律,对可逆过程则 Q=TdS 根据上面的式子, 再加上焓, 自由能, 自由焓的定义, 可以得到简单可压缩系统状态参数 间的四个基本关系式,如下: dU=TdS-pdV dH=Tds+Vdp dF=-SdT-pdV dG=-SdT+Vdp 这些式子可以用于闭
等温过程是热力学术语,是指热力学系统始末态温度相等,且等于环境的温度,在整个过程中环境的温度不变的热力学过程。
主条目:亥姆霍兹自由能
系统经历等温、等体积的热力学过程,可以用亥姆霍兹自由能作为自发性判据。亥姆霍兹自由能定义如下:
对于一个系统的等温、等体积的热力学过程:
其中,U是系统的内能,T是温度,S是熵。
亥姆霍兹自由能的变化量等于一个系统在等温条件下能做的最大的功。即:
主条目:吉布斯自由能
对于等温、等压的热力学过程,用吉布斯自由能作为该过程自发性的判据。由于化学实验经常在等压条件下完成,因此在化学领域中吉布斯自由能更常用。吉布斯自由能定义如下:
对于一个系统的等温、等压以及无非体积功的热力学过程:
对于体系有非体积功{\displaystyle \omega _{ ext{add}}}的等温、等压的热力学过程,吉布斯自由能的变化等于系统能做的最大非体积功。即:
上式在处理电功等非体积功问题中扮演了重要角色,例如燃料电池以及电化学电池的设计。
1.物料、能量平衡 (试题比例为16%)
掌握工艺过程的物料、能量平衡设计分析方法及对系统和单元设备计算技能。
1.1 工业过程和化工过程的物料、能量(包括损耗)分析,化学反应式。
1.2 过程计算和物料平衡、能量平衡,过程质量守恒和能量守恒定律。
2.热力学过程 (试题比例为10%)
掌握热力学过程设计分析方法,以及对系统和单元设备计算技能。
2.1 物质的物理和化学性质:物质的物理性质的估算和换算,理想气体和混合气体,溶液性质。
2.2 热力学第一定律和能量:工业应用的基本设计知识和计算技能,包括相平衡、相图、潜热、PVT数据和关系、化学热平衡、反应热、燃烧、热力学过程、蒸发和结晶、热能综合利用、蒸汽和冷凝水平衡。
2.3 热力学第二定律和熵:工业应用的基本设计知识和计算技能。
2.4 动力循环:制冷和热泵。
3.流体流动过程(试题比例为14%)
掌握主要类别流动过程的设计分析方法,工业应用及对系统和单元设备计算技能。
3.1 伯努利方程应用,如管道水力计算、通过床层的流体流动、两相流等。
3.2 流体输送机械工艺参数的计算。
3.3 固体输送、筛分和粉碎。
3.4 气、液、固分离。
4.传热过程 (试题比例为14%)
掌握传热过程设计分析方法,工业应用及对系统和单元设备工艺计算技能。
4.1 能量守恒理论知识和在工业实际问题中的应用。
4.2 传导、对流、辐射热传递过程的分析、计算。
4.3 热交换器的工艺设计。
5.传质过程 (试题比例为14%)
掌握传质过程设计分析方法,工业应用及对系统和单元设备计算技能。
5.1 质量平衡理论知识和在工业应用中的计算技能。
5.2 对吸收、吸附、解吸、蒸馏、干燥、萃取、增湿和除湿等过程的分析和计算。
6.化学反应动力学(试题比例为6%)
掌握工业实现化学反应过程的设计分析,工业应用及对系统和单元设备计算技能。
6.1 化学反应动力学基本原理及工业应用。
6.2 化学反应器类型比较和选择。
6.3 化学反应器的工艺计算及分析:依据速率模型和/或产品分布(停留时间分配和相应转化率)来设计工业反应器,理想等温反应器(单级和多级间歇式反应器、活塞流反应器和连续搅拌罐式反应器)及单一绝热和非等温的单相和多相反应的反应器分析。
6.4 反应器的工艺控制。
7.化工工艺设计(试题比例为10%)
掌握化工装置工艺设计方法和技能。
7.1 工艺方案优化设计。
7.2 工艺流程图(PFD)。
7.3 设计压力和设计温度的确定。
7.4 能耗计算。
7.5 设备(容器、热交换器、塔器、泵、风机、压缩机等)工艺参数的确定;了解特殊制造要求、材料性质及防腐蚀要求。
7.6 过程控制(检测、分析、指示和控制)方案的确定。
7.7 熟悉工艺装置中的消防、劳动安全卫生、环境保护法规和应用。
8.化工工艺系统设计(试题比例为10%)
掌握化工装置工艺系统设计方法和技能。
8.1 装置内工艺和公用工程管道及仪表流程图(PID、UID)。
8.2 系统阻力降分析,管道中可压缩流体和不可压缩流体的阻力计算,管道、阀门的噪声控制,设备的接管要求,机泵压差要求。
8.3 阀门和安全阀、爆破片、限流孔板、阻火器等的设置原则及有关数据表;管道数据表。
8.4 设备标高和泵的净正吸入压头(NPSH)。
8.5 熟悉工厂的设备布置设计要求。
8.6 熟悉工厂的管道布置要求,熟悉设备、管道的绝热和涂漆要求。
8.7 通用安全分析方法,熟悉HAZOP(危险与可操作)分析和故障树形图分析、列表法。
9.工程经济分析(试题比例为3%)
熟悉在工程项目中运用工程经济分析方法的技能。
9.1 工程造价基本知识,技术经济分析的有关数据及评价方法,设计方案评价的要求和准则。
9.2 费用组成分析、工程定额和工程量计算规则。
9.3 了解概算、预算和成本估算方法。
10.化工工程项目管理(试题比例为3%)
熟悉化工工程项目管理,熟悉我国有关基本建设法律法规。
10.1 工程招标形式和程序,投标程序和策略,工程中标条件和评价方法,工程承包合同管理,工程成本和资源控制,工程索赔。
10.2 工程项目管理概念和基本知识。
10.3 工厂设计知识(内容、程序和阶段),我国有关基本建设法律法规。
10.4 本专业在工程项目实施各阶段(咨询、项目前期工作、报价、设计、采购、施工、监理、开车等)的职责、工作程序、文件内容和表达深度。