选择特殊符号
选择搜索类型
请输入搜索
工业上用硫酸汞为催化剂,反应在硫酸溶液中进行。这一方法在工业上应用历史较久,但由于汞的污染等问题,现已改用其他方法。
水合过程是有机合成方法之一,但作为重要的生产方法,还只限于少数类型产品,如乙醇及二元醇。
水合过程在有机化工中的最早应用是1913年在德国用乙炔水合制乙醛。当前在工业中的主要应用有以下四方面:
①烯烃水合 制备醇类的重要方法,在工业上得到广泛应用的是乙烯水合制乙醇以及丙烯水合制异丙醇:
根据马尔科夫尼科夫规则,只有乙烯水合可生成伯醇,其他烯烃水合均只能生成仲醇或叔醇。烯烃水合有直接水合和间接水合两种方法。间接水合法是先用硫酸吸收烯烃成为硫酸酯,后者再进行水解。这是较老的生产方法,现已为直接水合法所取代。直接水合法采用酸性催化剂(见酸碱催化剂),如用载于硅藻土上的磷酸催化剂、氧化钨、磷钨酸以及强酸性离子交换树脂等。烯烃水合是放热反应,温度低对平衡有利,但温度的选定主要决定于催化剂的活性(见催化活性)。升高压力能提高平衡转化率,但以不致使气相中的水蒸气在催化剂表面凝结为限。
②环氧化合物水合 这是制取二元醇的重要方法,主要是环氧乙烷水合制乙二醇,以及环氧丙烷水合制丙二醇:
用硫酸为催化剂时反应可在常压下进行,在加压下可以不用催化剂。
③腈的水合 这是工业上制取酰胺的重要方法,如丙烯腈水合制丙烯酰胺:最好的催化剂是骨架铜催化剂(见金属催化剂),又开发了生物催化剂。
④炔烃水合 主要是乙炔水合制乙醛:
C2H2 H2O─→CH3CHO
硫酸硫酸工业ppt通用
硫酸硫酸工业ppt通用
很多强酸都可能形成相对稳定的水合氢离子盐晶体。这些盐有时被称为酸的一水合物。通常,任何具有109或更高的电离常数的酸都可以形成水合氢离子盐。而电离常数小于109的酸一般不能形成稳定的H3O 盐。
例如,盐酸的电离常数为107,在室温下与水的混合物是液态的。而高氯酸的电离常数为1010,如果液体无水高氯酸和水以1:1的摩尔比结合,则反应形成固体一水合高氯酸,即高氯酸的水合氢离子盐:
H2O HClO4=H3O ·ClO4-
也有很多的含有水合的H3O 的例子,例如HCl·2H2O中含有H5O2 (H3O ·H2O),HBr·4H2O中含有H7O3 (H3O ·2H2O)和H9O4 (H3O ·3H2O)
有机不饱和烯烃酸催化的水合作用
酸催化水合反应中,一般使用稀硫酸进行催化,处理烯烃可合成醇,遵循马尔科夫尼科夫规则(Markovnikov's rule),反应属于亲电加成,产生碳正离子中间体(SN2),可为任意一级碳正离子,反应过程中,如形成的碳正离子不稳定(例如一级碳正离子),电子或基团会发生转移,形成更加稳定的碳正离子作为中间体。因为在水中,烯烃与醇化物存在化学反应平衡,所以该反应可逆。
如右图所示,电子和功能团的转移,趋向生成三级碳正离子。
水合反应总公式可表示为:
反应中,亲电的氢用于断裂双键,使产生碳正离子。
酸催化下,反应原理如下:
酸催化水合反应温度控制
因为水合反应与脱水反应存在化学平衡,脱水反应在较高温度下有优先性,于是水合反应当尽量控制在稍低的温度,以免平衡逆向。根据产物不同,反应控制的温度也不同。
一级碳正离子:低于170摄氏度
二级碳正离子:低于100摄氏度
三级碳正离子:低于25摄氏度
酸催化水合反应相对速率
有机化学反应中,反应速率往往与反应中间碳稳定性相关,稳定性越高,反应速率相对越高。
在酸催化水合反应中,可形成三级碳正离子中间体的反应物往往反应最快,其次则是二级碳正离子,再其次则是一级碳正离子,如前文所言,一级碳正离子由于其能量过高,甚至会无法形成。
形成碳正离子的步骤,是水合反应中的速率决定性步骤,而形成三级碳正离子的速率可以是形成二级碳正离子的百倍,中间体稳定的重要性对化学反应速率的影响可见一斑。
金属离子之水合反应情形
Na nH2O → [Na(H2O)n]
Al3 6H2O → [Al(H2O)6]3 → [H3O] [Al(H2O)5OH]2
PCl3 6H2O → H3PO3 3H3O 3Cl-
在美容化妆品的产品宣传中,经常看到“水合作用”的提法,例:某款产品含某种成份能提升肌肤细胞的水合作用。那么,什么是细胞间的水合作用?
我们都知道细胞的结构,细胞的外层是一种生物膜,称为细胞膜,属于半透膜(或称选择透过性),它既能使细胞维持稳定代谢的胞内环境,又能调节和选择物质进出细胞。
细胞吸收的重要介质是水,任何细胞营养元素的摄入都首先要溶于水中,或水解成细胞可吸收的大小,然后通过浓度扩散的方式通过细胞膜进入细胞体内,这个过程就是“水合作用”。