选择特殊符号
选择搜索类型
请输入搜索
如果进入管子的水流量不变,加在管子上的热负荷不断升高,则换热区域和放热系数
但是,当热负荷大于某一界限值后再增加,则过冷沸腾进一步提前,饱和核沸腾区逐渐缩短。虽然核沸腾区的
当热负荷非常高时,甚至在过冷区域就会偏离核沸腾而转入膜态沸腾,如图2中的曲线5所示。2100433B
管内沸腾是强制对流与沸腾2种现象同时发生的换热过程,也是其与大容器沸腾的根本区别,因此又称为对流沸腾。强制对流换热的放热系数主要取决于流速,并且是通过流体物性参数的变化显示出来,而沸腾换热的换热强度取决于热负荷(或称热流密度)。对于图1所示的对流沸腾,在各换热区间中对流与沸腾2种换热方式所起的作用是不一样的,具有不同的换热机理,其管内局部对流沸腾放热系数沿管长(即随x)的变化关系如图2所示。图2中每条曲线表示某一热负荷,A,B,…,G为相应于图1的换热区间。下面先讨论热负荷不太高,即图2中曲线1的情况。
在单相液体区(A段),换热机理为单相强制对流换热,热负荷的影响很微弱,放热系数
进入表面沸腾区后(B段),放热系数
在饱和核态沸腾区(C段)初始阶段,x约小于0.3时,热量传递主要是沸腾换热,换热强度取决于热负荷,而单相对流,即流速的影响趋近于零。当热负荷一定时,
进入双相强制对流换热区域后(D段),随着液膜的逐渐减薄,使液膜的导热性增强而不再形成汽泡,此时由管壁传来的热量以强制对流的方式,通过液膜的导热而传递到汽水分界面上,在该界面上液体不断被蒸发,使液体的汽化过程从核态沸腾转入表面蒸发。由于汽水混合物流速的进一步提高,放热系数沿流动方向继续增大,沸腾换热的影响逐渐下降,而对流换热的份额越来越大,当混合物流速相当高时,热负荷的影响渐趋消失,因此流速成为决定性因素。
在干涸点E,由于液膜被蒸干或撕破而消失,a突然下降到接近于饱和蒸汽对流换热的数值。
干涸后的欠液换热区(F段),是传热恶化后湿蒸汽与管壁的换热。此时工质处于热力学不平衡状态,热量传递过程相当复杂:热量可以由壁面传给蒸汽,使蒸汽过热后再传给液滴,从而使液滴蒸发,热量也可以从壁面直接传给能撞击到壁面上的液滴而使其蒸发。若壁温很高,热量还可以由壁面以辐射的方式传给蒸汽和液滴。这一区段中的放热系数
进入过热蒸汽区后(G段),换热又遵循单相强制对流的规律。由于蒸汽温度比内壁温度增加得快一些,放热系数
管壁温度沿管长的变化取决于局部放热系数,见图1所示。在单相水和表面沸腾区,壁温与工质温度差值不大,并随工质温度的提高而增加。当进入饱和核态沸腾和双相强制对流换热区时,由于放热系数
当未饱和水在均匀受热的垂直管中向上流动直到形成过热蒸汽时,如果热负荷不太高,则流动工况、换热方式、管壁温度及流体温度的变化示意图如图1所示。其中,当工质在管内作对流沸腾时,沸腾换热的状况与汽水混合物的流型有很大关系,按换热规律可以分为以下几个区间。
区间A为单相液体强制对流换热区。此区段液体温度尚未达到饱和温度,管壁温度稍高于水的饱和温度,但低于产生汽泡所必须的过热度。
区间B为表面沸腾(也称过冷沸腾)区。此区段位于泡状流动的初期,管壁温度已具有形成汽化核心的过热度,内壁面上开始产生汽泡,但由于主流的平均温度仍低于饱和温度,存在过冷度,因此形成的汽泡或者脱离壁面进入中心水流后即被冷凝而消失,或者仍然附着在壁面上。此时管子截面上的热力学含汽率x<0,当所有的水均加热到饱和,即x=0时,此区段结束。
区间C为饱和核态沸腾区。此区段流动结构包括泡状流动,弹状流动和部分环状流动。由于此时管内水的温度已达到饱和温度,汽泡脱离壁面后不再凝结消失,含汽率x值由0开始增加。在环状流动的初期阶段,贴壁的液膜尺寸较厚,内壁上还是能形成汽泡,此时换热状态仍可近似认为属于核态沸腾。当液膜中不再产生汽泡,沸腾传热机理发生变化时,该区段结束。
区间D为双相强制对流换热区。随着x的增加,工质进入液滴环状流动结构。由于环状液膜的厚度逐渐减薄,因而液膜的导热性增强,最后使得紧贴管壁的液体不能过热形成汽泡时,核态沸腾的作用受到抑制。
图1中的E点称为干涸点。随着液膜不断地蒸发及被中心汽流卷吸的结果,沿着流动方向液膜愈来愈薄,最终管壁上的液膜在某一x值下被蒸干或撕破而完全消失,出现干涸,即传热恶化现象。这时壁面直接同蒸汽接触,使得壁面温度急剧地上升。
区间F为干涸后的换热区,也称为欠液区。蒸干后,管内为蒸汽携带液滴的雾状流动,直到液滴完全蒸发变成干蒸汽为止。这一区段的换热依靠液滴碰到壁面时的导热及含液滴蒸汽流的对流换热,此时可能处于蒸汽有些过热,而液滴仍为饱和温度的热力学不平衡状态。因此,在该区段管子的某一截面上,热力学含汽率x=1。
区间G为单相蒸汽强制对流换热区。在此区段中,汽流携带的液滴全部蒸发成蒸汽,此时的流动工况为单相的过热蒸汽。
对啊,两者是呈线性关系的,同时增加,传热系数每增加1W/m2℃,围护结构的冷负荷约增加1.8W/m2
热负荷是功率的一种。热负荷是燃料在燃烧器中(如燃气具、燃气热水器、燃气取暖炉、火箭发动机燃烧室)燃烧时单位时间内所释放的热量。其计算式为:热负荷=燃料消耗量*燃料低热值。热负荷的大小是由主燃烧器燃料消...
板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算...
热负荷偏差对供暖系统影响的分析
热负荷偏差对供暖系统影响的分析——分析了设计热负荷偏大对室内供暖系统的影响,得出设计热负荷偏大对单管系统克服垂直 热力失调是有利的结论;经分析设计热负荷偏大对管网及热源的影响,得出仅靠加大室内设计热负荷达不到良好供暖的结果,相反,加大室内设计...
提速对计算空调列车热负荷的影响
对列车提速对空调列车的热负荷的影响进行分析.通过对夏季热负荷的计算,得出了热负荷随速度变化的关系,并分析了热负荷随速度变化的规律.最后讨论了车体隔热结构不严密处的漏风对热负荷的影响
在20世纪70年代初期采用的是光滑管,换热管水平放置,制冷剂蒸汽走管内,管外走空气,主要用于空调器中制冷剂蒸汽的冷凝。为了强化管外的换热,一般在管外加翅片。许多研究者对于光滑管内的冷凝换热的机理进行了广泛的研究,换热管直径在3~以上,制冷剂为纯质制冷剂、近共沸混合物制冷剂及非共沸混合物制冷剂。
研究证实,冷凝换热的强度与流动状态密切相关,光滑管内的冷凝过程一般可分为环状流、分层流、波状流、团状流和柱状流,团状流和柱状流在冷凝过程的末端出现,不同的流动状态,冷凝换热系数的大小不同。而流动状态是由蒸汽的剪切力和重力的大小决定的,当蒸汽剪切力起主要作用时,流动表现为环状流,当重力起主要作用时,流动表现为分层流、波状流和团状流。
毛细结构中的相变现象广泛存在于自然界和许多领域中,是一个较为复杂的传热传质现象,迄今对其机理还缺乏比较系统的认识。随着科学技术的迅速发展,近几年在前苏联、美国和德国等技术发达国家业已开始了这方面相关的研究工作。毛细结构中的蒸发传热过程与常规蒸发过程在本质上有差异。毛细管是毛细多孔材料的基本结构形式之一,其有效孔径可由毫米量级到数十纳米量级,并在化工、制冷和空间技术等许多方面具有广泛的应用背景。毛细管内的汽化和凝结过程是复杂毛细结构中汽液相变过程的基础。
汽液弯月面上的蒸发传热过程因在各种毛细材料中的汽液两相过程中起着相当重要的作用而受到重视。P.C.W ayner Jr、S.A.Kovalev和S.L.Solovyev以及D .Khrustalev等研究了汽液弯月界面上的蒸发传热过程,并指出其扩展微细液膜区在整个弯月面的传热过程中起着重要的作用。毛细管内的蒸发是一个毛细管内所形成的空间弯曲界面上的热质传递过程,热量的传递主要通过相变过程中质量的迁移来实现。
文献 在综合考虑毛细管内扩展微细液膜和弯月界面上传热传质过程的基础上,对毛细管内的蒸发传热机理进行较为深入的分析,提出了其传热性能的计算方法,并作了实例计算。毛细管内的蒸发弯月面可分为平衡稳定液膜区、过渡液膜区和弯月面弯曲区。热质传递过程发生在过渡液膜区和弯月面弯曲区。计算结果表明:在过渡液膜区具有很高的换热系数,毛细管径的增大将导致毛细管内换热系数的下降。2100433B
液体和高于其饱和温度的壁面接触时就会产生沸腾,此时,壁面向流体放热的现象称为沸腾传热。对液体加热时,在液体内部伴有由液相变成汽相而产生气泡的进程称为沸腾。
沸腾产生的方法:将加热壁面浸没在液体中,液体在壁面处受热沸腾,称为大容器沸腾。液体在管内流动时受热沸腾,称为管内沸腾。
当饱和蒸气与低于饱和温度的壁面相接触时,蒸气将放出潜热,并冷凝成液体。
蒸汽冷凝的方式:膜状冷凝(film-type condensation)和滴状冷凝 (dropwise condensation)。
若冷凝液能润湿壁面并能形成一层完整的液滴,称膜状冷凝由于表面张力的作用,冷凝在壁面上形成许多液滴最终会形成膜状冷凝。