选择特殊符号
选择搜索类型
请输入搜索
钙钛矿作为一种人工合成材料,在 2009 年首次被尝试应用于光伏发电领域后,因为性能优异、成本低廉、商业价值巨大,从此大放异彩。近年,全球顶尖科研机构和大型跨国公司,如牛津大学、瑞士洛桑联邦理工学院、日本松下、夏普、东芝等都投入了大量人力物力,力争早日实现量产。
2017 年 2 月,纤纳光电以 15.2%的转换效率,首次打破此前长期由日本保持的钙钛矿小组件的世界效率纪录。此后,分别在当年 5 月和 12 月,以 16%和 17.4%的转换效率实现了一年三破世界纪录的佳绩。这一次,他们又将钙钛矿小组件转换效率提升至 17.9%,稳态输出效率达 17.3%。该结果再一次证明了中国科学家在钙钛矿领域的技术领先优势。
.
.
钙钛矿太阳电池发展现状良好,但仍有若干关键因素可能制约钙钛矿太阳电池的发展:
1、电池的稳定性问题。
2、吸收层中含有可溶性重金属Pb
3、现今钙钛矿应用最广的为旋涂法,但是旋涂法难于沉积大面积、连续的钙钛矿薄膜,故还需对其他方法进行改进,以期能制备高效的大面积钙钛矿太阳电池, 便于以后的商业化生产。
4、钙钛矿太阳电池的理论研究还有待增强。
在接受太阳光照射时,钙钛矿层首先吸收光子产生电子-空穴对。由于钙钛矿材激子束缚能的差异,这些载流子或者成为自由载流子,或者形成激子。而且,因为这些钙钛矿材料往往具有较低的载流子复合几率和较高的载流子迁移率,所以载流子的扩散距离和寿命较长。
然后,这些未复合的电子和空穴分别被电子传输层和空穴传输层收集,即电子从钙钛矿层传输到等电子传输层,最后被ITO收集;空穴从钙钛矿层传输到空穴传输层,最后被金属电极收集,当然,这些过程中总不免伴随着一些使载流子的损失,如电子传输层的电子与钙钛矿层空穴的可逆复合、电子传输层的电子与空穴传输层的空穴的复合(钙钛矿层不致密的情况)、钙钛矿层的电子与空穴传输层的空穴的复合。要提高电池的整体性能,这些载流子的损失应该降到最低。
最后,通过连接FTO和金属电极的电路而产生光电流。
钙钛矿型太阳能电池(perovskite solar cells),是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,即是将染料敏化太阳能电...
你好!很高兴为你解答,钙钛矿太阳能电池,科学家们在最新研究中发现,一种钙钛矿结构的有机太阳能电池的转化效率或可高达50%,为目前市场上太阳能电池转化效率的2倍,能大幅降低太阳能电池的使用成本。相关研究...
在进行太阳能电池组件的设计计算时,对于全年负载不变的情况,太阳能电池组件的设计计算是基于辐照最低的月份。如果负载的工作情况是变化的,即每个月份的负载对电力的需求是不一样的,那么在设计时采取的最好方法就...
钙钛矿晶体为ABX3 结构,一般为立方体或八面体结构。在钙钛矿晶体中,B离子位于立方晶胞的中心,被6个X离子包围成配位立方八面体,配位数为6;A离子位于立方晶胞的角顶,被12个X离子包围成配位八面体,配位数为12,如图 所示,其中,A离子和X离子半径相近,共同构成立方密堆积。
钙钛矿太阳电池中,A离子通常指的是有机阳离子,最常用的为CH3NH3
(RA = 0.18 nm),其他诸如NH2CH=NH2 (RA = 0.23 nm),
CH3CH2NH3 (RA = 0.19-0.22 nm) 也有一定的应用。B离子指的是金属阳离子,主要有Pb2 (RB = 0.119 nm)和Sn2 (RB = 0.110 nm)。X离子为卤族阴离子, 即 I− (RX = 0.220 nm)、Cl−(RX = 0.181 nm)和Br−(RX = 0.196 nm)。
如图a所示,介孔结构的钙钛矿太阳电池为:FTO导电玻璃、TiO2 致密层、TiO2 介孔层、钙钛矿层、HTM层、金属电极。
在此基础上,Snaith等把多孔支架层n型半导体TiO2 换成绝缘材料Al2O3,形成如图b所示的一种介观超结构的异质结型太阳电池。
更进一步地,去掉绝缘的支架层,如图c所示,制备出具有类似于p-i-n结构平面型异质结电池。
Gratzel等还在介孔结构基础上将HTM层直接去掉,形成CH3NH3PbI3/TiO2异质结, 制备出一种无HTM层结构,如图d所示。
此外, Malinkiewicz等人把钙钛矿材料作为吸光层用于有机太阳能电池的结构中,如图e。
太阳能电池是一种通过光电效应或者光化学反应直接把光能转化成电能的装置。1839年, 法国物理学家Becquerel发现了光生伏特效应,1876年,英国科学家Adams等人发现,当太阳光照射硒半导体时,会产生电流。这种光电效应太阳能电池的工作原理是,当太阳光照在半导体 p-n 结区上,会激发形成空穴-电子对(激子)在p-n结电场的作用下,激子首先被分离成为电子与空穴并分别向阴极和阳极输运。光生空穴流向p区,光生电子流向n区,接通电路就形成电流。
Fritts在1883年制备成功第一块硒上覆薄金的半导体/金属结太阳能电池, 其效率仅约 1%。1954 年美国贝尔实验室的 Pearson,Fuller和Chapin等人研制出了第一块晶体硅太阳能电池,获得4.5%的转换效率, 开启了利用太阳能发电的新纪元。
此后, 太阳能技术发展大致经历了三个阶段:第一代太阳能电池主要指单晶硅和多晶硅太阳能电池,其在实验室的光电转换效率已经分别达到25%和20.4%;第二代太阳能电池主要包括非晶硅薄膜电池和多晶硅薄膜电池。第三代太阳能电池主要指具有高转换效率的一些新概念电池, 如染料敏化电池、量子点电池以及有机太阳能电池等。
钙钛矿太阳能电池的制备工艺与光伏性能研究
设计和制备结构为FTO玻璃/TiO_2致密层/TiO_2介孔层/CH-3NH_3PbI_3吸收层/C电极的钙钛矿太阳能电池。采用两步法制备CH_3NH_3PbI_3吸收层:首先通过旋涂技术制备PbI_2薄膜,然后将PbI_2薄膜在浓度为0.044 mol/L的甲基碘化胺/异丙醇(MAI/IPA)溶液中分别浸泡反应0.5 h、2.5 h、3.5 h和4.0 h后获得CH3NH3PbI_3吸收层。研究了浸泡反应时间对CH_3NH_3PbI_3吸收层的结构和形貌以及对电池光伏性能的影响。结果表明:PbI_2薄膜在MAI/IPA溶液中反应后形成四方结构的CH_3NH_3PbI_3晶粒,当浸泡反应3.5 h时,CH_3NH_3PbI_3晶粒的平均尺寸最大,均匀性较好;XRD图谱中只有CH_3NH_3PbI_3的特征峰,而PbI_2的特征峰完全消失。同时,该条件下制备的钙钛矿太阳能电池的光伏性能最佳,其开路电压0.881 V、短路电流密度达到22.17 mA/cm~2,光电转化效率6.79%,且在整个可见光区的光子-电子的转换效率接近50%。
钙钛矿型太阳能电池制备工艺及稳定性研究进展
有机-无机杂化钙钛矿型太阳能电池因其简单的制备工艺,低廉的制造成本,优异的光电转换效率,成为光伏领域的研究热点.钙钛矿光吸收材料具有消光系数高、载流子迁移率高、载流子寿命长、带隙可调控等优点.短短几年内,钙钛矿型太阳能电池的效率从最初的3.8%提高到22.1%.目前,为了获得稳定高效的钙钛矿型太阳能电池,主要有以下几个研究思路:新型器件结构设计;结构功能层的材料形貌设计;结构各功能层间的界面修饰;空穴传输材料的选择;对电极的选择.本文通过文献综述,在回顾了国内外研究者对钙钛矿型太阳能电池的研究历程的基础上,介绍了钙钛矿型太阳能电池的结构和工作原理,重点总结了电子传输层和钙钛矿层的制备工艺及优化,并讨论了钙钛矿型太阳能电池的稳定性以及展望了其商业化的前景.
此整套系统可以应用在有机发光及钙钛矿太阳能电池行业,其中的设备也可以单独使用用于其它无水无氧实验,如锂电池,有机化学,材料处理等。 实验仪器可用于材料科学,材料工程,物理,化学等多学科平台共享使用。
手套箱水氧<1ppm 集成风机流量>90m3/h 过滤器:规格 0.2 微米 干泵可手动或通过PLC启动,流量≥12m3/h 冷阱装置可以达到-100℃ 旋涂仪分辨率小于0.5RPM,重复性误差要小于±0.5RPM 蒸发系统极抽气时间:大气压~5*10-4Pa小于30min(干燥氮气充入后) 蒸发:电阻式蒸发电极(4对)配备4套数显蒸发电源 真空系统是由分子泵机械泵 分子泵分子泵(抽速大于620L); 膜厚仪为石英晶振,配原装水冷探头二套。
近日,日本冲绳科学技术大学院大学(OIST)的研究人员采用一种稳定、高效且相对便宜的钙钛矿材料开发出新型太阳能电池。
背景
太阳能,是颇具代表性的新能源之一。其优势包括:清洁、可再生、无污染、易获取等等。为了将太阳光的能量直接转化为电能,我们通常要借助一种设备:太阳能电池。如今,太阳能电池在我们的身边到处可见,例如:窗户、墙壁、汽车、智能手机、平板电脑等物品中都会见到太阳能电池的身影。
迄今为止,大多数的太阳能电池都是由硅制成,因为这种材料非常善于吸收光线。可是,硅面板的制造成本却很昂贵。
科学家们一直都在研究由钙钛矿组成的结构,使之成为硅的替代品。真正的钙钛矿,是一种存在于地球中的矿物,它由钙、钛、氧分子经过特殊排列而成。具有相同晶体结构的材料称为钙钛矿结构。
相比于共棱、共面形式连接的结构,钙钛矿结构显得更加稳定,更有利于缺陷的扩散迁移。因此,钙钛矿具备了许多优异的物理化学特性,例如电催化性、吸光性等。
钙钛矿结构非常适合作为太阳能电池吸收光线的活性层,因为它们吸收光线的效率比硅更高,且成本更低廉。将钙钛矿结构集成到太阳能电池中,需要采用的设备也相对简单。例如,它们可以溶解到溶剂中,直接喷涂到基底上面。
由钙钛矿结构组成的材料有望为太阳能电池设备带来一场革命,但是却具有一个严重的缺陷:它们通常很不稳定,在高温条件下性能会退化。这严重阻碍了它们的商用。
创新
日本冲绳科学技术大学院大学(OIST)能量材料与表面科学单位的研究人员,由YabingQi教授领导,采用一种稳定、高效且相对便宜的钙钛矿材料开发出太阳能电池,同时也为这种钙钛矿材料未来在太阳能电池中的应用铺平了道路。
他们的研究论文最近发表于《先进能源材料(Advanced Energy Materials)》杂志。博士后学者JiaLiang博士和ZonghaoLiu博士对这项研究作出了主要贡献。
技术
这种材料具有几种关键特征。首先,它是完全无机的(一个重要的变化),因为有机成分通常不耐热,性能会在高温条件下退化。因为太阳能电池会在太阳光照射下变得过热,所以热稳定性显得非常关键。通过无机材料取代有机成分,钙钛矿太阳能电池会变得更加稳定。
如下图所示,这种全无机钙钛矿太阳能电池具有几层。底层是仅有几毫米厚的玻璃,第二层是透明导电材料FTO,接下来是由二氧化钛组成的电子活性层,第四层是光敏钙钛矿,顶层是碳。
下图是钙钛矿太阳能电池的电子显微镜图像,它显示出不同的层。
论文作者之一的ZonghaoLiu博士说:“太阳能电池在暴露于光线中300小时后,几乎未发生改变。”
然而,所有的无机钙钛矿太阳能电池都比有机无机混合物的光线吸收率要低。第二个特征也由此而来:OIST的研究人员将新型电池与锰掺杂,以改善其性能。锰改变了材料的晶体结构,提升了光线吸收能力。Liu表示:“就像你将盐放入一盘菜中来改变它的口味一样,当我们添加锰的时候,它改变了太阳能电池的特性。”
第三,在这些太阳能电池中,在太阳能电池之间传输电流的电极和外部电线都是由碳组成,而不是通常用的金。这些电极特别便宜且易于制造,一部分是由于它们能够直接印刷到太阳能电池中。从另外一方面说,制造金电极则需要高温条件以及真空室等特殊设备。
价值
总结一下,这项研究开发出的钙钛矿太阳能电池具有几项优势:热稳定性好、光线吸收率高、制造工艺简单且成本低。因此,这项研究也为未来钙钛矿太阳能电池的大规模商用奠定了基础。
未来
在变成像硅太阳能电池一样的商用产品之前,钙钛矿太阳能电池仍有一系列的挑战需要克服。例如,钙钛矿太阳能电池可保持运行一到两年,而硅太阳能电池可运行达二十年。
为了改善这些新型电池的效率和持久性,Qi及其同事们正努力工作,同时也在开发制造商用产品的工艺。2009年,首个太阳能电池被报道开发出来。此后,这项技术进展迅猛,这些新型电池的前景看上去很光明。