选择特殊符号
选择搜索类型
请输入搜索
随着器件工作温度的上升,击穿电压逐渐升高。温度由300K上升到350K时,器件的临界击穿电压K增加了将近200V;温度升高到450K时,器件的临界击穿电压圪增加了将近400V。对这种增加关系所做的一种简单的微观解释为:强场下通过耗尽层的热载流子在走过每个电子.声子平均自由程入后,有部分能量损失给了光学声子。入值随温度的增加而减少,因此,在恒定电场下沿给定距离行进的载流子有更多的能量损失给晶格,从而载流子在能够获得足够的能量产生一个电子、空穴对之前,必须通过较大的电势差。较大的电势差,说明需要较高的电压,因此击穿电压会随温度升高而增加。
平面工艺是制造各种半导体器件与集成电路的基本工艺技术。弯曲的部分使得形成了柱面结和球面结结构,而这两种结结构的曲率半径都很小(特别是浅结结构时),对于高压大功率器件,加上偏压时,该处的电场集中严重,使得该区域的击穿电压低于器件体内击穿电压。在结终端弯曲处的电场线密集,电场强度比其它区域要高出很多。场强越高,碰撞电离就越容易发生,击穿也就越容易发生。
界面态指的是半导体和氧化物界面上的表面态。界面电荷能够引起耗尽区收缩,加剧了主结边缘区域的电场集中。 2100433B
电介质有绝缘和存储电荷的特性,在一定的电压范围内,即在相对弱电场范围内,介质保持介电状态。当电场强度超过某一临界值时,介质由介电状态变为导电状态,这种现象叫做介质的击穿。介质的击穿决定了电介质保持绝缘性质的极限,并且在许多情况下己成为决定电气、电子设备的最终寿命的重要因素,因此,研究电介质的击穿现象及其规律,具有很重要的实际意义。
—般的介质击穿分为电击穿和热击穿两种。由陶瓷内部气孔引起的内电离,由电化学效应引起的介质老化,以及由强电场作用下的应力和电致应变、压电效应和电致相交等引起的变形和开裂,最终导致电击穿或热击穿。
电击穿是指在电场直接作用下,介质中载流子迅速增殖造成的击穿。这个过程约在10一7s完成,往往击穿突然发生,击穿电场强度较高。一般认为,电击穿的发生是因为晶体能带在强电场作用下发生变化,电子直接由满带跃迁到空带发生电离所致。
热击穿是指陶瓷介质在电场作用下发生热不稳定,因温度升高而导致的破坏。热不稳定是指在电场作用下,由于介质的电导和非位移极化等原因造成的介质损耗随温度的升高而增大,又导致陶瓷介质的温度的再升高,产生的热量大于散失的热量导致陶瓷介质发生热击穿。由于热击穿有—个热量积累过程,所以不像电击穿那样迅速,往往使陶瓷介质的温度急剧升高,但击穿电场强度较低。瓷料的击穿电压与试样的厚度;电极的大小、形状、结构;试验时的温度、湿度;电压的种类、加压时间;试样周围的环境等许多因素有关。
当栅极-发射极并接零点位、集电极接正电位时,处于截止状态。由于结两边的掺杂在外延层一边是均匀的,而在p阱的一边为离子注入形成的高斯分布,而且掺杂浓度比外延层高,所以,据PN结理论,随着集电极-发射极电压的增大,结耗尽区(空间电荷区)主要向外延层一边扩展。结空间电荷区扩展的结果将是相邻p阱的空间电荷区相连,这时,承受了几乎全部的集电极-发射极电压。
反之,如果,集电极接零电位,栅极-发射极短路接高电位,器件是不导通的,此状态称为反向截止状态,一般,在直流或电压源逆变器应用中,并不需要反向阻断特性,这使得人们在实际中着重对器件正向击穿电压的设计和优化。
工作于放大状态的三极管,其发射结是正向偏置的,集电结是反向偏置的,管子有电流放大作用。当输人信号过大或偏置过大,使得流过发射结的正向电流过大,结上功率损耗过多面将发射结烧坏。输人信号偏大或偏置偏高,虽尚未造成发射结烧坏,但经管子的电流放大作用,使得流过集电结的集电极电流过大,集电结功率损耗过多面将集电结烧坏。
径流系数主要受集水区的地形、流域特性因子、平均坡度、地表植被情况及土壤特性等的影响。径流系数越大则代表降雨较不易被土壤吸收,亦即会增加排水沟渠的负荷。
摇床运动的不对称性它对矿粒沿纵向的选择性搬运及床层的松散影响很大。适宜的不对称性,要求既能保证较好的选择性搬运性能,又保证床层的充分松散。对较难松散和较易搬运的粗粒物料,不对称性可小些,对较易松散,但...
主要是指矿物成分及微观结构两方面。矿物成分:膨胀土含大量的活性粘土矿物,如蒙脱石和伊利石,尤其是蒙脱石,比表面积大,在低含水量时对水有巨大的吸力,土中蒙脱石含量的多寡直接决定着土的胀缩性质的大小。微观...
一般情况下,正向电压1V左右就可以“击穿”二极管,此时称为正向击穿,不过我们称之为不导通。工作于正向偏置的PN结,当通过的电流过大时,将会使它的功率损耗过大而烧坏,但由于正向偏置的PN结两端电压很低(锗PN结约为0.2V左右,硅PN结约为0.7V左右),故当加在PN结两端的正向电压过大时会使PN结发生击穿,称为正向击穿。而工作于反向偏置的PN结,当反偏电压过高时,将会使PN结击穿,如击穿后又未限制流过它的反向击穿电流,将会使击穿成为永久性的、不可逆的击穿,从而造成其彻底损坏。
工作价值取向的结构、影响因素及结果变量
一、工作价值取向的概念美国社会学家Bellah等人于1985年在《心灵的习性》中提出工作价值取向(work value orientation),认为个体与其工作之间或许存在三种不一样的关联,即JOB-CAREER-CALLING并阐述了不同工作价值取向的内涵。不同的学者有对此有不同的翻译版本,本研究借鉴赵敏、何云霞的翻译版本,即谋生-职业-事业取向。Wrzesniewski从工作目
基坑变形影响因素研究
基坑变形影响因素研究——通过对软土基坑变形影响因素的研究,可以从设计、施工人手找到控制基坑变形的一些方法,防止发生过大基坑变形及地表沉降,解决基坑开挖施工中引起的基坑稳定问题。
二极管有正向和反向之分,所以它的两根引脚之间的电阻分为正向电阻和反向电阻两种。
如图1、图2所示分别为二极管的正向电阻和反向电阻的等效电路。正向电阻是二极管正向导通后正、负极之间的电阻,也就是PN结的正向电阻,这个电阻很小。
反向电阻是二极管处于反向偏置而未击穿时的电阻,也就是PN结的反向电阻,这一电阻很大。正、反电阻的大小是相对而言的,反向电阻要远远大于正向电阻。
二极管正向电阻的大小还和正向电流的大小相关,当二极管的正向电流在变化时,二极管的正向电阻将随之微小变化,正向电流越大,正向电阻越小,反之则越大。
利用二极管的正向电阻和反向电阻相差很大的这一特性,可以将二极管作为电子开关器件使用。
根据电弧运动过程中,弧柱所经过区域重击穿放电发生的空间位置,在综合考虑电弧等离子体电极属性基础上,将重击穿分为以下两种:
触头间隙的重击穿
包括阳极侧重击穿、阴极侧重击穿及混合重击穿,如图1所示。触头间的重击穿造成电弧电压大幅骤降,严重增加燃弧时间,加剧触头的侵蚀,缩短开关电器的电寿命。
触头与电弧等离子体之间的重击穿
电弧等离子体与触头之间的击穿放电形成放电通道,电弧呈局部分叉的形态,如图2所示。这种重击穿是直流大功率继电器桥式双断点触头中特有的现象。该重击穿会对触头边缘造成严重烧蚀,同时在灭弧室内形成大面积烧弧区域,给直流大功率继电器灭弧室内部其他零部件带来严重侵蚀甚至爆炸的隐患。
正向平均电流IF(AV)