选择特殊符号
选择搜索类型
请输入搜索
今有南望方邑,不知大小。立两表东、西去六丈,齐人目,以索连之。令东表与邑东南隅及东北隅三相直。当东表之北却行五步,遥望邑西北隅,入索东端二丈二尺六寸半。又却北行去表一十三步二尺,遥望邑西北隅,适与西表相三合。问邑方及邑去表各几何? 答曰:邑方三里四十三步、四分步之三;邑去表四里四十五步。 术曰:以入索乘后去表,以两表相去除之,所得为景差;以前去表减之,不尽以为法。置后去表,以前去表减之,馀以乘入索为实。实如法而一,得邑方。求去表远近者:置后去表,以景差减之,馀以乘前去表为实。实如法而一,得邑去表。
由于待测的方城宽度AB,在东西方向,与地面平行,因此两支在C点D点插入地面与地面垂直的表杆,在此不用作直接测量,测量是依靠一根拴在C、D两根垂直表杆中间的一条水平测量绳索CD完成的。此题中一根水平测量绳作两次测量用。
今有望松生山上,不知高下。立两表齐,高二丈,前后相去五十步,令后表与前表三相直。从前表却行七步四尺,薄地遥望松末,与表端三合。又望松本,入表二尺八寸。复从后表却行八步五尺,薄地遥望松末,亦与表端三合。问松高及山去表各几何? 答曰:松高一十二丈二尺八寸;山去表一里二十八步、七分步之四。术曰:以入表乘表间为实。相多为法,除之。加入表,即得松高。求表去山远近者:置表间,以前表却行乘之为实。相多为法,除之,得山去表。
CD EF 表示前后两支表杆,前表杆有刻度,用作两次测量,第一次从G点瞄准A、C两点成直线,第二次从G点校准树根J,读出前表杆上度数(入表)。
表高 =CD=2丈 前表却行=DG=7步4尺 后表却行=FH=8步5尺 相多=FH-DG 表间=DF=50步 松高=AJ 前表去山远近=BD 入表=CK=二尺八寸
松高=AJ=CK x DF/(FH-DG) CK 前表去山远近=BD=DF x DG/(FH-DG)
由于前表去岛的距离不能直接测量,刘徽用同样高度的表杆前后测量,表杆与地面垂直,人眼贴地,望表杆顶和岛上山顶对齐,这时测得人眼和前表杆的水平距离叫“前表却行”DF=123步;再将表杆往后移动,两彪杆间距称为“表间”=1000步,依法测出“后表却行”FH=127步。
表高 =CD, 前表却行=DG 后表却行=FH 相多=FH-DG 表间=DF 岛高=AB 前表去岛远近=BD
依法得岛高AB=CDxDF/(FH-DG) CD
前表去岛远近BD=DGxDF/(FH-DG)
松生山上三次测量示意图
垫层
问题一:设计说明说女儿墙要高度大于500,女儿墙底下要设置300c25砼,那他还要设置构造柱吗? ——:也要有构造柱
手边没有软件,没法演示截图。可以将工程导出另存为一个新的工程,此时可以选择更改清单和定额库
望海岛
今有望海岛,立两表,齐高三丈,前后相去千步,令后表与前表三相直。从前表却行一百二十三步,人目着地取望岛峰,与表末三合。从后表却行一百二十七步,人目着地取望岛峰,亦与表末三合。问岛高及去表各几何? 答曰:岛高四里五十五步;去表一百二里一百五十步。 术曰:以表高乘表间为实;相多为法,除之。所得加表高,即得岛高。求前表去岛远近者:以前表却行乘表间为实;相多为法。除之,得岛去表里数。
望海岛二次测量示意图
由于前表去岛的距离不能直接测量,刘徽用同样高度的表杆前后测量,表杆与地面垂直,人眼贴地,望表杆顶和岛上山顶对齐,这时测得人眼和前表杆的水平距离叫"前表却行"DF=123步;再将表杆往后移动,两彪杆间距称为"表间"=1000步,依法测出"后表却行"FH=127步。
表高 =CD, 前表却行=DG 后表却行=FH 相多=FH-DG 表间=DF 岛高=AB 前表去岛远近=BD
依法得岛高AB=CDxDF/(FH-DG)+CD
前表去岛远近BD=DGxDF/(FH-DG)
松生山上三次测量示意图
望松生山上
今有望松生山上,不知高下。立两表齐,高二丈,前后相去五十步,令后表与前表三相直。从前表却行七步四尺,薄地遥望松末,与表端三合。又望松本,入表二尺八寸。复从后表却行八步五尺,薄地遥望松末,亦与表端三合。问松高及山去表各几何? 答曰:松高一十二丈二尺八寸;山去表一里二十八步、七分步之四。术曰:以入表乘表间为实。相多为法,除之。加入表,即得松高。求表去山远近者:置表间,以前表却行乘之为实。相多为法,除之,得山去表。
CD EF 表示前后两支表杆,前表杆有刻度,用作两次测量,第一次从G点瞄准A、C两点成直线,第二次从G点校准树根J,读出前表杆上度数(入表)。
表高 =CD=2丈 前表却行=DG=7步4尺 后表却行=FH=8步5尺 相多=FH-DG 表间=DF=50步 松高=AJ 前表去山远近=BD 入表=CK=二尺八寸
松高=AJ=CK x DF/(FH-DG)+CK 前表去山远近=BD=DF x DG/(FH-DG)
南望方邑
今有南望方邑,不知大小。立两表东、西去六丈,齐人目,以索连之。令东表与邑东南隅及东北隅三相直。当东表之北却行五步,遥望邑西北隅,入索东端二丈二尺六寸半。又却北行去表一十三步二尺,遥望邑西北隅,适与西表相三合。问邑方及邑去表各几何? 答曰:邑方三里四十三步、四分步之三;邑去表四里四十五步。 术曰:以入索乘后去表,以两表相去除之,所得为景差;以前去表减之,不尽以为法。置后去表,以前去表减之,馀以乘入索为实。实如法而一,得邑方。求去表远近者:置后去表,以景差减之,馀以乘前去表为实。实如法而一,得邑去表。
由于待测的方城宽度AB,在东西方向,与地面平行,因此两支在C点D点插入地面与地面垂直的表杆,在此不用作直接测量,测量是依靠一根拴在C、D两根垂直表杆中间的一条水平测量绳索CD完成的。此题中一根水平测量绳作两次测量用。
望深谷
今有望深谷,偃矩岸上,令勾高六尺。从勾端望谷底,入下股九尺一寸。又设重矩于上,其矩间相去三丈。更从勾端望谷底,入上股八尺五寸。问谷深几何?答曰:四十一丈九尺。术曰:置矩间,以上股乘之,为实。上、下股相减,馀为法,除之。所得以勾高减之,即得谷深。
登山望楼
今有登山望楼,楼在平地。偃矩山上,令句高六尺。从句端斜望楼足,入下股一丈二尺。又设重矩于上,令其间相去三丈。更从句端斜望楼足,入上股一丈一尺四寸。又立小表于入股之会,复从句端斜望楼岑端,入小表八寸。问楼高几何? 答曰:八丈。 术曰:上下股相减,馀为法;置矩闲,以下股乘之,如句高而一。所得,以入小表乘之,为实。实如法而一,即是楼高。
南望波口
今有东南望波口,立两表南、北相去九丈,以索薄地连之。当北表之西却行去表六丈,薄地遥望波口南岸,入索北端四丈二寸。以望北岸,入前所望表里一丈二尺。又却后行1去表一十三丈五尺。薄地遥望波口南岸,与南表三合。问波口广几何?答曰:一里二百步。 术曰:以后去表乘入索,如表相去而一。所得,以前去表减之,馀以为法;复以前去表减后去表,馀以乘入所望表里为实,实如法而一,得波口广。
此题中一根水平测量绳,作三次测量用
今有望清渊,渊下有白石。偃矩岸上,令句高三尺。斜望水岸,入下股四尺五寸。望白石,入下股二尺四寸。又设重矩于上,其间相去四尺。更从句端斜望水岸,入上股四尺。以望白石,入上股二尺二寸。问水深几何? 答曰:一丈二尺。 术曰:置望水上下股相减,馀以乘望石上股为上率。又以望石上下股相减,馀以乘望水上股为下率。两率相减,馀以乘矩间为实;以二差相乘为法。实如法而一,得水深。又术:列望水上下股及望石上下股,相减,馀为法。以望石下股减望水下股,馀以乘矩间为实,实如法而一,得水深。
A标志水岸,S标志白石,C标志岸边;句是古代测量用具之一,有两个边成直角(如今三角板):使用时句的一边务必与地面垂直。此题用两个句,一个在C,一个在D,各测量水岸和水底白石。此题用四次测望术。
登山望津
今有登山望津,津在山南。偃矩山上,令句高一丈二尺。从句端斜望津南岸,入下股二丈三尺一寸。又望津北岸,入前望股里一丈八寸。更登高岩北,却行二十二步,上登五十一步,偃矩山上。更从句端斜望津南岸,入上股二丈二尺。问津广几何? 答曰:二里一百二步。 术曰:以句高乘下股,如上股而一。所得以句高减之,馀为法;置北行,以句高乘之,如上股而一。所得以减上登,馀以乘入股里为实。实 如法而一,即得津广。
登山临邑
今有登山临邑,邑在山南。偃矩山上,令勾高三尺五寸。令勾端与邑东南隅及东北隅三相直。从勾端遥望东北隅,入下股一丈二尺。又施横勾于入股之会,从立勾端望西北隅,入横勾五尺。望东南隅,入下股一丈八尺。又设重矩于上,令矩间相去四丈。更从立勾端望东南隅,入上股一丈七尺五寸。问邑广长各几何? 答曰:南北长一里一百步;东西广一里三十三步、少半步。术曰:以勾高乘东南隅入下股,如上股而一,所得减勾高,馀为法;以东北隅下股减东南隅下股,馀以乘矩间为实。实如法而一,得邑南北长也。求邑广:以入横勾乘矩间为实。实如法而一,即得邑东西广。
此题用四次测望术
注:《海岛算经》共九问。从题目文字可知所有计算都是用筹算进行的。"为实"指作为一个分数的分子,"为法"指作为分数的分母。所用的长度单位有里、丈、步、尺、寸;1里=180丈=1800尺;1丈=10尺:1步=6尺,1尺=10寸。
今有望海岛,立两表,齐高三丈,前后相去千步,令后表与前表三相直。从前表却行一百二十三步,人目着地取望岛峰,与表末三合。
从后表却行一百二十七步,人目着地取望岛峰,亦与表末三合。问岛高及去表各几何? 答曰:岛高四里五十五步;去表一百二里一百五十步。 术曰:以表高乘表间为实;相多为法,除之。所得加表高,即得岛高。求前表去岛远近者:以前表却行乘表间为实;相多为法。除之,得岛去表里数。
今有望深谷,偃矩岸上,令勾高六尺。从勾端望谷底,入下股九尺一寸。又设重矩于上,其矩间相去三丈。更从勾端望谷底,入上股八尺五寸。问谷深几何?答曰:四十一丈九尺。术曰:置矩间,以上股乘之,为实。上、下股相减,馀为法,除之。所得以勾高减之,即得谷深。
今有登山望楼,楼在平地。偃矩山上,令句高六尺。从句端斜望楼足,入下股一丈二尺。又设重矩于上,令其间相去三丈。更从句端斜望楼足,入上股一丈一尺四寸。又立小表于入股之会,复从句端斜望楼岑端,入小表八寸。问楼高几何? 答曰:八丈。 术曰:上下股相减,馀为法;置矩闲,以下股乘之,如句高而一。所得,以入小表乘之,为实。实如法而一,即是楼高。
今有东南望波口,立两表南、北相去九丈,以索薄地连之。当北表之西却行去表六丈,薄地遥望波口南岸,入索北端四丈二寸。以望北岸,入前所望表里一丈二尺。又却后行1去表一十三丈五尺。薄地遥望波口南岸,与南表三合。问波口广几何?答曰:一里二百步。 术曰:以后去表乘入索,如表相去而一。所得,以前去表减之,馀以为法;复以前去表减后去表,馀以乘入所望表里为实,实如法而一,得波口广。
此题中一根水平测量绳,作三次测量用
今有望清渊,渊下有白石。偃矩岸上,令句高三尺。斜望水岸,入下股四尺五寸。望白石,入下股二尺四寸。又设重矩于上,其间相去四尺。更从句端斜望水岸,入上股四尺。以望白石,入上股二尺二寸。问水深几何? 答曰:一丈二尺。 术曰:置望水上下股相减,馀以乘望石上股为上率。又以望石上下股相减,馀以乘望水上股为下率。两率相减,馀以乘矩间为实;以二差相乘为法。实如法而一,得水深。又术:列望水上下股及望石上下股,相减,馀为法。以望石下股减望水下股,馀以乘矩间为实,实如法而一,得水深。
A标志水岸,S标志白石,C标志岸边;句是古代测量用具之一,有两个边成直角(如今三角板):使用时句的一边务必与地面垂直。此题用两个句,一个在C,一个在D,各测量水岸和水底白石。此题用四次测望术。
今有登山望津,津在山南。偃矩山上,令句高一丈二尺。从句端斜望津南岸,入下股二丈三尺一寸。又望津北岸,入前望股里一丈八寸。更登高岩北,却行二十二步,上登五十一步,偃矩山上。更从句端斜望津南岸,入上股二丈二尺。问津广几何? 答曰:二里一百二步。 术曰:以句高乘下股,如上股而一。所得以句高减之,馀为法;置北行,以句高乘之,如上股而一。所得以减上登,馀以乘入股里为实。实 如法而一,即得津广。
今有登山临邑,邑在山南。偃矩山上,令勾高三尺五寸。令勾端与邑东南隅及东北隅三相直。从勾端遥望东北隅,入下股一丈二尺。又施横勾于入股之会,从立勾端望西北隅,入横勾五尺。望东南隅,入下股一丈八尺。又设重矩于上,令矩间相去四丈。更从立勾端望东南隅,入上股一丈七尺五寸。问邑广长各几何? 答曰:南北长一里一百步;东西广一里三十三步、少半步。术曰:以勾高乘东南隅入下股,如上股而一,所得减勾高,馀为法;以东北隅下股减东南隅下股,馀以乘矩间为实。实如法而一,得邑南北长也。求邑广:以入横勾乘矩间为实。实如法而一,即得邑东西广。
此题用四次测望术
注:《海岛算经》共九问。从题目文字可知所有计算都是用筹算进行的。“为实”指作为一个分数的分子,“为法”指作为分数的分母。所用的长度单位有里、丈、步、尺、寸;1里=180丈=1800尺;1丈=10尺:1步=6尺,1尺=10寸。
同望造价说明
编制工程造价工作流程 四个文件 十大步骤 编制任何一份公路工程造价, 都需要“四个文件、 十大步骤”, 这里先初步介绍一下这四个 文件和十大步骤组成的流程图 四个文件 建立顺序 文件名称 作用 一 定额文件 确定配套定额(包括补充定额) 二 费率文件 确定项目的综合费率标准(包括地方标准) 三 单价文件 确定工料机项目与预算单价 四 单项工程文件 确定造价所需的工程项目、数量与配套定额 有了以上四个文件, 按编制办法的有关规定, 通过将它们有机的组合, 就可以编制出一份完 整的公路工程造价文件。 十大步骤 第一步: 新建建设项目文件 第二步: 准备定额、费率、单价文件 第三步: 建立单项工程文件 第四步: 建立项目表 第五步: 输入工程量 第六步: 定额录入、调整及取费 第七步: 计算第二、三部分费用 第八步: 工料机分析与单价计算 第九步:造价计算, 并对计算结果进行审核, 若有误,应将
同望造价WECOST例题
(施工图预算 ---广珠公路 ) 编制信息 : 建设项目基本信息: 1、建设项目名称:广珠公路珠海段 2、编制类型:施工图预算 3、路线总长: 5km 4、建设单位: XX 建设开发总公司 5、设计单位: XX 公路设计院 6、建管费汇总方式:以汇总后建安费为基数 7、建管费汇总累进办法: 08建管费部颁标准 8、汇总累进费率系数: 1 造价文件基本信息 1、文件名称: K0+000~K5+000 2、计价依据: 08部颁预算计价依据 3、主定额: 08部颁预算定额 4、工程类别:路线 5、起止桩号: K0+000~K5+000 6、设计长度: 5km 7、公路等级:一级公路 8、建设性质:改建 9、平均养护月数: 2 个月 10、车船税标准:广东省标准 11、机械不变费用系数: 1 12、建管费累进办法:同上建设项目 13、年造价上涨率: 0 14、上涨计费年限: 0
测回法;同时用正镜测量和倒镜测量测量一个未知角。
测回法适用于观测只有两个方向的单角。
这种方法要用盘左和盘右两个位置进行观测。观测时目镜朝向观测者,如果竖盘位于望远镜的左侧,称为盘左;如果位于右侧,则称为盘右。通常先以盘左位置测角,称为上半测回。两个半测回合在一起称为一测回。有时水平角需要观测数测回。2100433B
其最小应变为1με(με—微应变,1με=10ε)。在常温静态测量时,误差一般为1~3%;动态测量时,误差在3~5%范围内。
可测±1~2×10με;力或重力的测量范围10~105N等。
可以测量从静态到数105Hz动态应变。
在现场或野外等恶劣环境下均可进行测试。
能在高、低温或高压环境等特殊条件下进行测量。
便于与计算机联结进行数据采集与处理,易于实现数字化、自动化及无线电遥测。
电测法为应力测试方法中的一种,金属电阻丝承受拉伸或压缩变形时,电阻也将发生变化。将电阻丝往复绕成特殊形状(如栅状),就可做成电阻应变片。测量前,将电阻应变片用特殊的胶合剂黏贴在欲测应变的部位,当壳体受到载荷作用发生变形时,电阻应变片中的电阻丝随之一起变形,导致电阻丝长度及截面积的改变,从而引起其电阻值的变化。可见,电阻的变化与应变有一定的对应关系。通过电阻应变仪,就可测得相应的变化。利用胡克定律或其他理论公式,就可求得应力值。
电测时,应尽量消除产生各种测量误差的因素。例如,应变片位置的偏差,应变片与壳壁接触的紧密程度,应变片与导线的焊接质量,环境、温度的变化等。
电测法往往采用二次仪表观测,即将传感器(探头)埋设于崩滑灾害体变形部位,使用能将传感器电信号转换成人们所感知(或熟识)信息的电子仪表(如频率计之类)观测。
1.测量精度高、范围广
2.应变片尺寸小,重量轻,粘贴方便,对试件的工作状态和应力分布影响小
3.频率响应快,机械滞后小。利用该方法不仅可以测试件在静载荷下的应变,而且可以测动载和冲击载荷下的应变,监测采样速度快,可自动巡回检测,远距离传输。
4.可在恶劣的环境下测量
5.可对运动的结构实测
6.自动化程度高,可实现遥控测量
7.观测的成果资料比机测可靠度高。
电测位移计一定要具备防风、防雨、防腐蚀、防潮、防震、防雷电干扰等性能,以保障仪器仪表的长期稳定性及监测成果资料的可靠度。
1.一枚应变片只能测一个"点",而且测出的应变只能代表栅长范围内的平均应变
2.应变片只能测试件表面的应力、应变,对结构内部的应力测量很难进行
3.尽管应变片尺寸可以很小,但对应力集中的测量仍不够精确