选择特殊符号
选择搜索类型
请输入搜索
荷电粒子在高频直线加速器中是用高频(或微波)电场的轴向分量进行加速。按采用的加速波分类,有行波与驻波两类。前者用圆柱波导作为加速结构,在其内沿轴周期性地设置圆盘负载,使波导中传播的相速小于或等于光速,以利同步地加速粒子,其加速场的模式为类-TM01,它在近轴区提供最大的轴向电场分量。后者采用圆柱形谐振腔,也沿轴周期性地设置电极(或称漂移管)负载,以提高有效加速电场强度,其加速场的模式为类-TM010,同样在近轴区提供最大的轴向电场分量。衡量加速结构性能的主要参数有两类:一是与加速效率有关的参量,特别是有效分路阻抗。它表示给定高频功率损耗,结构能建立多高的加速电场。分路阻抗的高低决定于选用的频率、结构的几何尺寸与形状及相邻加速单元间高频相位的变化量(工作模式)。通常频率越高,结构尺寸越小,分路阻抗和加速效率越高。二是加速结构的稳定性,它表征由于结构的误差和邻近非加速模式对束流的影响。对驻波加速结构,实现稳定性的主要途径是采用所谓的双周期结构,即除了由负载形成的周期性加速单元外,还引进周期性的耦合单元,调节耦合单元的位置和尺寸,便可提高结构的抗干扰性。
荷电粒子在高频直线加速器中是用高频(或微波)电场的轴向分量进行加速。按采用的加速波分类,有行波与驻波两类。前者用圆柱波导作为加速结构,在其内沿轴周期性地设置圆盘负载,使波导中传播的相速小于或等于光速,以利同步地加速粒子,其加速场的模式为类-TM01,它在近轴区提供最大的轴向电场分量。后者采用圆柱形谐振腔,也沿轴周期性地设置电极(或称漂移管)负载,以提高有效加速电场强度,其加速场的模式为类-TM010,同样在近轴区提供最大的轴向电场分量。衡量加速结构性能的主要参数有两类:一是与加速效率有关的参量,特别是有效分路阻抗。它表示给定高频功率损耗,结构能建立多高的加速电场。分路阻抗的高低决定于选用的频率、结构的几何尺寸与形状及相邻加速单元间高频相位的变化量(工作模式)。通常频率越高,结构尺寸越小,分路阻抗和加速效率越高。二是加速结构的稳定性,它表征由于结构的误差和邻近非加速模式对束流的影响。对驻波加速结构,实现稳定性的主要途径是采用所谓的双周期结构,即除了由负载形成的周期性加速单元外,还引进周期性的耦合单元,调节耦合单元的位置和尺寸,便可提高结构的抗干扰性。
束流的注入和引出很方便,束流强、传输效率高、束品质较好,可由前至后分段设计、制造和调试。由于加速器不存在偏转束的同步辐射限制,可将电子束加速到很高能量,是下一代超高能对撞机的唯一候选者(见对撞机)。为使加速器有适当的长度,轴上加速电场强度一般在5—25兆伏/米,需要很大的微波功率源,因此单位束流功率所需造价和运行费用较高。现今提出的超导加速器可有效地降低运行费用。
请问这种医院里的直线加速器在钢筋里怎么画啊 用什么构件呢 ,用自定义线不行 答:我个人认为,还是单构件输入法吧。如果用剪力墙加暗柱或端柱,汇总后还要编辑钢筋锁定构件。也不化算的。(或者用异形柱试一试)...
用剪力墙吧,不过你这个应该要编辑钢筋
电子直线加速器,现在不工作,已经放出x射线,你应该查找原因,看看是否对人体有危险。
加速器是由三根用绝缘材料制成的高柱和在它们中间的加速器管组成。加速器靠真空泵保持真空。外表流线型,不仅为了美观,而且为了防止从任何棱角或突出部分形成意外的放电。
在加速器管中有金属圈,它们同高压发生器相连的方式能使一系列金属圈的负压由底部向顶端逐渐升高。生产质子的离子源安装在加速器管的上端。带正电的质子由于受到带负电的金属圈的吸引而顺管射下——由于下面金属圈的负电压不断增大,质子的速度也不断增加。在加速器管的地端的地板下面,有一间装有接收器的小室,质子能够在这里同物质碰撞,在此过程中,轰击能够引起原子核的蜕变。
按被加速粒子的种类,可分为电子、质子和重离子直线加速器。
可采用行波或驻波加速粒子。当采用行波加速时,可使结构设计成等阻抗或等梯度型。等阻抗型是一种均匀的加速结构,即结构的各尺寸沿轴不变,便于设计和制造,缺点是微波功率在结构中的损耗不均匀,对较长的直线加速器来说,沿轴的结构温控较不容易。等梯度型加速结构避免了这个缺点,代价是沿轴的结构尺寸有慢变化,使设计和制造较复杂些。
质子的静止质量是电子的1,800多倍,在其很长的加速范围内,速度远小于或小于光速,因而采用驻波加速结构,以获得较高的有效分路阻抗和加速效率。质子的动能由1兆电子伏到1,000兆电子伏,其速度由光速的4.6%到87.5%。为使结构在不同能区均有较高的加速效率,需采用不同的结构。如:①质子的动能由小于1兆伏加速到几兆伏,可采用高频四极型加速结构(Radio Frequency Quadrupole,RFQ)。在一圆柱腔的中心部位,方位角对称地设置四个轴向高频电极,在它们所围的近轴区,产生四极聚焦电场,以径向聚焦束流;沿轴可周期性地调变每个电极的径向尺寸,以得到在轴向群聚和加速束流的轴向电场。它兼具聚束、聚焦和加速几种作用,是20世纪70年代兴起的加速结构,选用频率为200—400兆赫。②质子动能要由几兆电子伏加速到150兆电子伏左右,可采用漂移管型结构(又称阿尔瓦雷茨结构),是20世纪40年代末由L.阿尔瓦雷茨首先提出和建造的。在圆柱形腔内,沿轴周期性地设置长度随能量渐增的电极。当高频电场处在正半周时,质子束团在电极间被加速;当处在负半周时,质子束团躲在电极内不受负半周减速场的影响而漂移前进,故又称电极为漂移管。在漂移管内安放四极磁铁,可径向聚焦束流,选用的频率为200—400兆赫。③当质子动能要由150兆电子伏加速到更高能量,通常采用耦合腔加速结构。在该能区内对质子束的径向聚焦已较容易,可将四极磁铁移到加速腔外,使频率提高到800—1,300兆赫,以提高加速效率。这种结构也可用于加速电子,工作频率通常为1,300—3,000兆赫。
较接近于质子直线加速器,只是在同样动能下,粒子运动速度更低,因而工作频率也更低,一般在27—150兆赫左右。早期的这类加速器,采用维德罗加速结构。现代的这类加速器按能区可采用高频四极型或阿瓦莱兹型。现今发展的重离子加速结构,如柱形和平面螺旋线结构、分离环谐振腔结构等,它们的特点是径向尺寸较小、公差要求较松、可做成许多短腔组合成整台加速器,既便于采用超导技术,又利于展宽重离子的范围和能量连续可变的需求。
利用超导材料做成的结构,其功耗几乎可略去不计,因而可用较小微波功率建立较高的加速电场。这类加速腔大多采用内表面涂有氧化保护层的纯铌材料制成,置于液氮和液氦逐级冷却的低温容器中,可冷却至4.2K或更低。加速电场可达几兆伏/米至20兆伏/米以上。将超导腔用于高能直线加速器,优势更显著。如用于强流质子直线加速器的高能段(约150—1,000兆电子伏),由于功耗可略去不计,可选用束通道孔径较大的结构,可有效避免高能强流束沿途损失造成严重的放射性污染。此外,还有利于提高加速场强,减小设备规模和运行费用等。提议中的超导正负电子直线对撞机(TESLA),选用比其他同类对撞机方案(5,700—11,400兆赫)低得多的频率(1,300兆赫)和较大的束孔径,除仍有较高的加速电场(约25兆伏/米)外,束流在腔壁上感生的尾场相对很小,较易确保束流的高品质(发射度小、能散小等)。
直线加速器是各类加速器中被最广泛应用的加速器类型(见粒子加速器)。
医用直线加速器机房设计及建设要点
医用电子直线加速器是放射治疗的主要治疗设备,在机房的布局设计和辐射防护设计、系统电源、通风及空调系统、施工建设中的细节等方面都有相关要求,因此在机房设计建设的过程中要考虑到每一个细节,才能保证机房的辐射安全、设备的顺利安装和稳定运行。
直线加速器操作规程
直线加速器操作规程 (PRICISE) 1、 开机: 打开机柜上的电源开关。键入 RESET键,控制台屏幕显示进入 PRIMUS 界面。然后键入 F1键进入治疗模式。机器预热,屏幕下方提示 WURMUP, 进入待机状态。 2、 病人更换拖鞋进入机房,躺在治疗床上,先松开床锁。将治疗床升至要 求高度,使三维激光与病人体表的激光线完全重合,然后核对源皮距,调 节射野面积、准直器角度、机臂角度以及添加附件。认真检查治疗单,确 认各项条件准确无误后, 固定病人,锁定治疗床,关闭屏蔽门,退出机房。 3、 工作人员进入控制室,根据医嘱治疗单要求,在控制台操作键盘上输入 病人治疗中所要求的能量、 治疗剂量(MU)。经核对无误后,键入 ACCEFT 键,将右上角的钥匙右旋至 RAD ON,启动绿色的 RAD ON开关,进行 治疗。在治疗过程中,应通过监视器密切观察病人体位有无变动,如发现 异常情况,应立
小型质子直线加速器主要用于质子治疗.。90年代初美国Hamm,Grandall等人首先提出利用S波段直线加速器进行质子治疗的建议。利用S波段边耦合直线加速器获得毫米质子束,可以使用医用电子直线加速器现成的高频技术,我们也对此进行了研究。除质子治疗外,这种加速器还可用作材料科学和生命科学研究。2100433B
强流质子直线加速器按其束流时间结构可分为连续束和脉冲束两类。连续束强流质子直线加速器主要用于核能领域,如嬗变核废料、增殖核燃料、提供洁净核能等,建造难度极大。目前美国、西欧和日本都在进行研究工作。脉冲束强流质子直线加速器主要用于高通量脉冲散裂中子,它是有重要价值的科学研究装置,主要利用中子散射研究凝聚态物理。目前美国准备建造的NSNS(National Spallation Neutron Source)和西欧计划建造的ESS(European Spallation Source)均属此类。为了获得几十安培的窄脉冲束,需要在直线加速器后设置一个积聚环(Accumulator)。从直线加速器引出的负氢离子束被注入积聚环,在注入时负氢离子被剥离为质子。直线加速器束流脉冲宽度约1ms,可以注入约一千圈,然后一次引出送到重核靶上。强流质子直线加速器还可用于其他方面。例如利用质子束打靶时产生的π介子及其衰变产物μ介子和中微子进行粒子物理和核物理的研究(如中微子振荡等),在武器研究方面也有多种用途。
《电子直线加速器设计基础》系统论述了电子直线加速器的基本理论及其设计。作者从微波电磁场的基本理论以及如何在加速结构中建立加速带电粒子的电磁场理论出发,着重论述了带电粒子在高频电磁场中的运动规律和电子直线加速器设计的基本理论,进而阐述了如何设计电子直线加速器,并通过一台200MeV电子直线加速器的实例介绍了有关电子直线加速器的相关系统的参数和调试运行。通过这些论述,力图让读者对电子直线加速器设计的基本理论和方法以及调试运行有所了解。
《电子直线加速器设计基础》可供从事电子直线加速器研制的科研人员和高等院校相关专业的研究生阅读,对加速器运行维护的工程技术人员以及本科生也有重要的参考价值。