选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 电气百科

离散傅里叶变换计算机代码

离散傅里叶变换计算机代码

1.C语言实现代码
intDFT(intdir,intm,double*x1,double*y1)
{
longi,k;
doublearg;
doublecosarg,sinarg;
double*x2=NULL,*y2=NULL;
x2=malloc(m*sizeof(double));
y2=malloc(m*sizeof(double));
if(x2==NULL||y2==NULL)return(FALSE);
for(i=0;i
 

查看详情

离散傅里叶变换造价信息

  • 市场价
  • 信息价
  • 询价

计算机

  • 计算机
  • 13%
  • 重庆中瑞环保工程有限公司
  • 2022-12-07
查看价格

计算机

  • i5-8500T8G内存128G固态RX560-4G独显
  • 海康威视
  • 13%
  • 河南大邦安防工程有限公司
  • 2022-12-07
查看价格

计算机

  • (用于收费电脑2和物业电脑1台)范围:管理设备;
  • 戴尔
  • 13%
  • 上海毅安实业有限公司
  • 2022-12-07
查看价格

计算机

  • I3,4G,500G
  • 13%
  • 上海莫威电子科技有限公司
  • 2022-12-07
查看价格

计算机

  • 酷睿I7 四核处理器 27英寸液晶显示器,带触摸功能
  • 13%
  • 深圳中科华恒科技有限公司
  • 2022-12-07
查看价格

便携式计算机

  • 台班
  • 韶关市2010年7月信息价
  • 建筑工程
查看价格

计算机彩色显示系统CRT

  • 湛江市2009年1季度信息价
  • 建筑工程
查看价格

计算机彩色显示系统软件

  • 湛江市2009年1季度信息价
  • 建筑工程
查看价格

饰线(普通)按展开面积计算

  • 阳江市2011年10月信息价
  • 建筑工程
查看价格

饰线(普通)按展开面积计算

  • 阳江市2011年8月信息价
  • 建筑工程
查看价格

计算机

  • 计算机
  • 1台
  • 3
  • 高档
  • 含税费 | 含运费
  • 2021-03-01
查看价格

计算机

  • 计算机
  • 1个
  • 3
  • 不限
  • 中档
  • 含税费 | 含运费
  • 2018-05-31
查看价格

计算机

  • 计算机
  • 1个
  • 2
  • 不限
  • 中档
  • 含税费 | 含运费
  • 2018-06-01
查看价格

计算机

  • 计算机
  • 2台
  • 1
  • 采用国产中高档主流产品
  • 中高档
  • 不含税费 | 含运费
  • 2018-06-11
查看价格

工业计算机

  • 台账计算机
  • 2台
  • 3
  • 中档
  • 不含税费 | 含运费
  • 2022-11-25
查看价格

离散傅里叶变换注意事项

(1)时域和频域混叠

根据采样定理,只有当采样频率大于信号最高频率的两倍时,才能避免频域混叠。实际信号的持续时间是有限的,因而从理论上来说,其频谱宽度是无限的,无论多 大的采样频率也不能满足采样定理。但是超过一定范围的高频分量对信号已没有多大的影响,因而在工程上总是对信号先进行低通滤波

另一方面,DFT得到的频率函数也是离散的,其频域抽样间隔为F0,即频率分辨力。为了对全部信号进行采样,必须是抽样点数N满足条件

N=T0/T=fs/F0

从以上两个公式来看,信号最高频率分量fc和频率分辨力F0有矛盾。若要fc增加,则抽样间隔T就要减小,而FS就要增加,若在抽样点数N不变的情况下,必然是F0增加,分辨力下降。唯一有效的方法是增加记录长度内的点数N,在fc和F0给定的条件下,N必须满足

N>2fc/F0

(2)截断效应

在实际中遇到的序列x(n),其长度往往是有限长,甚至是无限长,用DFT对其进行谱分析时,必须将其截断为长度为N的有限长序列

Y(n)=x(n).RN(n)

根据频率卷积定理

Y(e)=1/2Πx(e)*H(e)

|ω|<2π/N叫做主瓣,其余部分叫做旁瓣

(3)频谱泄露

原序列x(n)的频谱是离散谱线,经截断后使每根谱线都带上一个辛格谱,就好像使谱线向两边延申,通常将这种是遇上的截断导致频谱展宽成为泄露,泄露使得频谱变得模糊,分辨率降低

(4)谱间干扰

因截断使主谱线两边形成许多旁瓣,引起不同分量间的干扰,成为谱间干扰,这不仅影响频谱分辨率,严重时强信号的旁瓣可能湮灭弱信号的主谱线。

截断效应是无法完全消除的,只能根据要求折中选择有关参量。

(5)栅栏效应

N点DFT是在频率区间[0,2π]上对信号的频谱进行N点等间隔采样,得到的是若干个离散点X(k),且它们之限制为基频F0的整数倍,这部好像在栅栏的一边通过缝隙看另一边的景象,只能在离散点的地方看到真实的景象,其余部分频谱成分被遮拦,所以称为栅栏效应。

减小栅栏效应,可以在时域数据末端增加一些零值点,是一个周期内的点数增加

(6)信号长度的选择

在时域内对信号长度的选择会影响DFT运算的正确性。实际的信号往往是随机的,没有确定的周期,因此在实际中,应经可能估计出几个典型的、带有一定周期性的信号区域进行频谱分析,然后在取其平均值,从而得到合理的结果。

查看详情

离散傅里叶变换判断方法

判断系统是否为最小相位系统的简单方法是:如果两个系统的传递函数分子和分母的最高次数都分别是m,n,则频率ω趋于无穷时,两个系统的对数幅频曲线斜率均为-20(n-m)dB/dec但对数相频曲线却不同:最小相位系统趋于-90°(n-m),而非最小相位系统却不这样。

查看详情

离散傅里叶变换计算机代码常见问题

查看详情

离散傅里叶变换用DFT对模拟信号进行谱分析

在工程实际中经常遇到的模拟信号xn(t),其频谱函数Xn(jΩ)也是连续函数,为了利用DFT对xn(t)进行谱分析,对xn(t)进行时域采样得到x(n)= xn(nT),再对x(n)进行DFT,得到X(k)则是x(n)的傅里叶变换X(ejω)在频率区间[0,2π]上的N点等间隔采样,这里x(n)和X(k)都是有限长序列

然而,傅里叶变换理论证明,时间有限长的信号其频谱是无限宽的,反之,弱信号的频谱有限宽的则其持续时间将为无限长,因此,按采样定理采样时,采样序列应为无限长,这不满足DFT的条件。实际中,对于频谱很宽的信号,为防止时域采样后产生‘频谱混叠’,一般用前置滤波器滤除幅度较小的高频成分,使信号的带宽小于折叠频率;同样对于持续时间很长的信号,采样点数太多也会导致存储和计算困难,一般也是截取有限点进行计算。上述可以看出,用DFT对模拟信号进行谱分析,只能是近似的,其近似程度取决于信号带宽、采样频率和截取长度

模拟信号xn(t)的傅里叶变换对为

X(jΩ)={-∞, ∞}x(t)*exp^-jΩt dt

x(t)=1/2π{-∞, ∞} X(JΩ)*e^jΩt dΩ

用DFT方法计算这对变换对的方法如下:

(a)对xn(t)以T为间隔进行采样,即xn(t)|t=nT= xa(nT)= x(n),由于

t→nT,dt→T, {-∞, ∞}→∑n={-∞, ∞}

因此得到

X(jΩ)≈∑n={-∞, ∞}x(nT)*exp^-jΩnT*T

x(nT)≈1/2π{0, Ωs} X(JΩ)*e^jΩnT Dω

(b)将序列x(n)= xn(t)截断成包含有N个抽样点的有限长序列

X(jΩ)≈T∑n={0,N-1}x(nT)*exp^-jΩnT*T

由于时域抽样,抽样频率为fs=1/T,则频域产生以fs为周期的周期延拓,如果频域是带限信号,则有可能不产生频谱混叠,成为连续周期频谱序列,频谱的周期为fs=1/T

(c)为了数值计算,频域上也要抽样,即在频域的一个周期中取N个样点,fs=NF0,每个样点间隔为F0,频域抽样使频域的积分式变成求和式,而在时域就得到原来已经截断的离散时间序列的周期延拓,时间周期为T0=1/F0。因此有

Ω→kΩ0,dΩ→Ω0,{-∞, ∞} dΩ→∑n={-∞, ∞}Ω0

T0=1/F0=N/fs=NT

Ω0=2ΠF0

Ω0T=Ω0/fs=2π/N

X(jkΩ0)≈T∑n={0,N-1}x(nT)*exp^-jkΩ0nT

查看详情

离散傅里叶变换隐含的周期性

DFT的一个重要特点就是隐含的周期性,从表面上看,离散傅里叶变换在时域和频域都是非周期的,有限长的序列,但实质上DFT是从DFS引申出来的,它们的本质是一致的,因此DTS的周期性决定DFT具有隐含的周期性。可以从以下三个不同的角度去理解这种隐含的周期性

(1)从序列DFT与序列FT之间的关系考虑X(k)是对频谱X(ejω)在[0,2π]上的N点等间隔采样,当不限定k的取值范围在[0,N-1]时,那么k的取值就在[0,2π]以外,从而形成了对频谱X(ejω)的等间隔采样。由于X(ejω)是周期的,这种采样就必然形成一个周期序列

(2)从DFT与DFS之间的关系考虑。X(k)= ∑n={0,N-1}x(n) WNexp^nk,当不限定N时,具有周期性

(3)从WN来考虑,当不限定N时,具有周期性

查看详情

离散傅里叶变换基本性质

1.线性性质

如果X1(n)和X2(N)是两个有限长序列,长度分别为N1和N2,且Y(N)=AX1(N) BX2(N)

式中A,B为常数,取N=max[N1,N2],则Y(N)的N点DFT为

Y(K)=DFT[Y(N)]=AX1(K) BX2(K), 0≤K≤N-1;

2.循环移位特性

设X(N)为有限长序列,长度为N,则X(N)地循环移位定义为

Y(N)=X((N M))下标nR(N)

式中表明将X(N)以N为周期进行周期拓延得到新序列X'(N)=X((N))下标n,再将X'(N)左移M位,最后取主值序列得到循环移位序列Y(N)

查看详情

离散傅里叶变换物理意义

(1)物理意义

设x(n)是长度为N的有限长序列,则其傅里叶变换,Z变换与离散傅里叶变换分别用以下三个关系式表示

X(e^jω)= ∑n={0,N-1}x(n) e^j-ωn

X(z)= ∑n={0,N-1}x(n)z^-n

X(k)= ∑n={0,N-1}x(n) e^-j2πkn/N

单位圆上的Z变换就是序列的傅里叶变换

离散傅里叶变换是x(n)的频谱X(ejω)在[0,2π]上的N点等间隔采样,也就是对序列频谱的离散化,这就是DFT的物理意义.

查看详情

离散傅里叶变换定义

离散傅里叶变换(DFT),是傅里叶变换在时域和频域上都呈现离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。在实际应用中通常采用快速傅里叶变换以高效计算DFT。

查看详情

离散傅里叶变换计算机代码文献

短时傅里叶变换matlab程序 短时傅里叶变换matlab程序

短时傅里叶变换matlab程序

格式:pdf

大小:13KB

页数: 2页

function [Spec,Freq]=STFT(Sig,nLevel,WinLen,SampFreq) %计算离散信号的短时傅里叶变换; % Sig 待分析信号; % nLevel 频率轴长度划分(默认值 512); % WinLen 汉宁窗长度(默认值 64); % SampFreq 信号的采样频率 (默认值 1); if (nargin <1), error('At least one parameter required!'); end; Sig=real(Sig); SigLen=length(Sig); if (nargin <4), SampFreq=1; end if (nargin <3), WinLen=64; end if (nargin <2), nLevel=513; end nLevel=ceil(nLevel/2)*2+1;

高职院校计算机应用类专业离散数学课程教学改革探索与实践 高职院校计算机应用类专业离散数学课程教学改革探索与实践

高职院校计算机应用类专业离散数学课程教学改革探索与实践

格式:pdf

大小:13KB

页数: 2页

针对职业院校计算机应用类专业离散数学教学中存在的目标定位不准、教学内容处理简单和教学方法单一等不足,提出并讨论了准确定位课程目标、合理优化教学内容和综合利用各种有效的教学方法的教改思路。

余弦变换离散余弦变换

离散余弦变换(DCT for Discrete Cosine Transform)是与傅里叶变换相关的一种变换,它类似于离散傅里叶变换(DFT for Discrete Fourier Transform),但是只使用实数。离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,这个离散傅里叶变换是对一个实偶函数进行的(因为一个实偶函数的傅里叶变换仍然是一个实偶函数),在有些变形里面需要将输入或者输出的位置移动半个单位(DCT有8种标准类型,其中4种是常见的)。

最常用的一种离散余弦变换的类型是下面给出的第二种类型,通常我们所说的离散余弦变换指的就是这种。它的逆,也就是下面给出的第三种类型,通常相应的被称为"反离散余弦变换","逆离散余弦变换"或者"IDCT"。

有两个相关的变换,一个是离散正弦变换(DST for Discrete Sine Transform),它相当于一个长度大概是它两倍的实奇函数的离散傅里叶变换;另一个是改进的离散余弦变换(MDCT for Modified Discrete Cosine Transform),它相当于对交叠的数据进行离散余弦变换。

离散余弦变换,尤其是它的第二种类型,经常被信号处理和图像处理使用,用于对信号和图像(包括静止图像和运动图像)进行有损数据压缩。这是由于离散余弦变换具有很强的"能量集中"特性:大多数的自然信号(包括声音和图像)的能量都集中在离散余弦变换后的低频部分,而且当信号具有接近马尔科夫过程(Markov processes)的统计特性时,离散余弦变换的去相关性接近于K-L变换(Karhunen-Loève 变换--它具有最优的去相关性)的性能。

例如,在静止图像编码标准JPEG中,在运动图像编码标准MJPEG和MPEG的各个标准中都使用了离散余弦变换。在这些标准制中都使用了二维的第二种类型离散余弦变换,并将结果进行量化之后进行熵编码。这时对应第二种类型离散余弦变换中的n通常是8,并用该公式对每个8x8块的每行进行变换,然后每列进行变换。得到的是一个8x8的变换系数矩阵。其中(0,0)位置的元素就是直流分量,矩阵中的其他元素根据其位置表示不同频率的交流分量。

一个类似的变换, 改进的离散余弦变换被用在高级音频编码(AAC for Advanced Audio Coding),Vorbis 和 MP3 音频压缩当中。

离散余弦变换也经常被用来使用谱方法来解偏微分方程,这时候离散余弦变换的不同的变量对应着数组两端不同的奇/偶边界条件。

查看详情

离散系数简介

离散系数是衡量资料中各观测值离散程度的一个统计量。当进行两个或多个资料离散程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。如果单位和(或)平均数不同时,比较其离散程度就不能采用标准差,而需采用标准差与平均数的比值(相对值)来比较 :

表示总体离散系数和样本离散系数

离散系数通常可以进行多个总体的对比,通过离散系数大小的比较可以说明不同总体平均指标(一般来说是平均数)的代表性或稳定性大小。一般来说,离散系数越小,说明平均指标的代表性越好;离散系数越大,平均指标的代表性越差。

离散系数只对由比率标量计算出来的数值有意义。举例来说,对于一个气温的分布,使用开尔文或摄氏度来计算的话并不会改变标准差的值,但是温度的平均值会改变,因此使用不同的温标的话得出的变异系数是不同的。也就是说,使用区间标量得到的变异系数是没有意义的。

查看详情

离散系数应用

离散系数在概率论的许多分支中都有应用,比如说在更新理论、排队理论和可靠性理论中。在这些理论中,指数分布通常比正态分布更为常见。

由于指数分布的标准差等于其平均值,所以它的离散系数等于一。离散系数小于一的分布,比如爱尔朗分布称为低差别的 ,而离散系数大于一的分布,如超指数分布则被称为高差别的。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639